Structure of optimal policies to periodic-review inventory models with convex costs and backorders for all values of discount factors

This paper describes the structure of optimal policies for discounted periodic-review single-commodity total-cost inventory control problems with fixed ordering costs for finite and infinite horizons. There are known conditions in the literature for optimality of ( s t , S t ) policies for finite-ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2022-10, Vol.317 (1), p.29-45
Hauptverfasser: Feinberg, Eugene A., Liang, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 1
container_start_page 29
container_title Annals of operations research
container_volume 317
creator Feinberg, Eugene A.
Liang, Yan
description This paper describes the structure of optimal policies for discounted periodic-review single-commodity total-cost inventory control problems with fixed ordering costs for finite and infinite horizons. There are known conditions in the literature for optimality of ( s t , S t ) policies for finite-horizon problems and the optimality of ( s ,  S ) policies for infinite-horizon problems. The results of this paper cover the situation, when such assumption may not hold. This paper describes a parameter, which, together with the value of the discount factor and the horizon length, defines the structure of an optimal policy. For the infinite horizon, depending on the values of this parameter and the discount factor, an optimal policy either is an ( s ,  S ) policy or never orders inventory. For a finite horizon, depending on the values of this parameter, the discount factor, and the horizon length, there are three possible structures of an optimal policy: (1) it is an ( s t , S t ) policy, (2) it is an ( s t , S t ) policy at earlier stages and then does not order inventory, or (3) it never orders inventory. The paper also establishes continuity of optimal value functions and describes alternative optimal actions at states s t and s .
doi_str_mv 10.1007/s10479-017-2548-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2725714920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723204022</galeid><sourcerecordid>A723204022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-b95a705ae8cee932045fd06fe98c5244a0a4c15d2dd25a79e8f79d6f70ec2f303</originalsourceid><addsrcrecordid>eNp1kd2KFDEQhRtRcFx9AO8C3tprJd2ZdF8ui3-w4IV6HTJJZTZrT2dMpWd3H8D3toYR3AUlkILiO3UqOU3zWsK5BDDvSEJvxhakaZXuh3b9pFlJbVQ7dt3wtFkBd1vddfC8eUF0AwBSDnrV_Ppay-LrUlDkKPK-pp2bxD5PySckUbPYY0k5JN8WPCS8FWk-4FxzuRe7HHAicZvqtfCZ23dcqJJwcxAb53_kErCQiLkIN03i4KaFZ7JPSOTzMlcRnedR9LJ5Ft1E-OpPPWu-f3j_7fJTe_Xl4-fLi6vW9wpquxm1M6AdDh5x7BT0OgZYRxwHr1XfO3C9lzqoEBSTIw7RjGEdDaBXsYPurHlzmrsv-SfvUu1NXsrMllYZpY3sR_WA2roJbZpjrsX5He9sL4w62oJSTJ3_g-ITcJf4OzAm7j8SvH0g2CyUZiS-KG2vK23dQvQYlyfcl0xUMNp94XDKvZVgj5nbU-aWM7fHzO2aNeqkIWbnLZa_7_u_6DerabAZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725714920</pqid></control><display><type>article</type><title>Structure of optimal policies to periodic-review inventory models with convex costs and backorders for all values of discount factors</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Feinberg, Eugene A. ; Liang, Yan</creator><creatorcontrib>Feinberg, Eugene A. ; Liang, Yan</creatorcontrib><description>This paper describes the structure of optimal policies for discounted periodic-review single-commodity total-cost inventory control problems with fixed ordering costs for finite and infinite horizons. There are known conditions in the literature for optimality of ( s t , S t ) policies for finite-horizon problems and the optimality of ( s ,  S ) policies for infinite-horizon problems. The results of this paper cover the situation, when such assumption may not hold. This paper describes a parameter, which, together with the value of the discount factor and the horizon length, defines the structure of an optimal policy. For the infinite horizon, depending on the values of this parameter and the discount factor, an optimal policy either is an ( s ,  S ) policy or never orders inventory. For a finite horizon, depending on the values of this parameter, the discount factor, and the horizon length, there are three possible structures of an optimal policy: (1) it is an ( s t , S t ) policy, (2) it is an ( s t , S t ) policy at earlier stages and then does not order inventory, or (3) it never orders inventory. The paper also establishes continuity of optimal value functions and describes alternative optimal actions at states s t and s .</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-017-2548-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Avi-Itzhak-Sobel:Probability ; Business and Management ; Combinatorics ; Commodities ; Continuity (mathematics) ; Costs ; Discounts ; Horizon ; Inventory control ; Mathematical optimization ; Operations research ; Operations Research/Decision Theory ; Optimization ; Order quantity ; Parameters ; Policies ; Random variables ; Theory of Computation</subject><ispartof>Annals of operations research, 2022-10, Vol.317 (1), p.29-45</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer Science+Business Media New York 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-b95a705ae8cee932045fd06fe98c5244a0a4c15d2dd25a79e8f79d6f70ec2f303</citedby><cites>FETCH-LOGICAL-c420t-b95a705ae8cee932045fd06fe98c5244a0a4c15d2dd25a79e8f79d6f70ec2f303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-017-2548-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-017-2548-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Feinberg, Eugene A.</creatorcontrib><creatorcontrib>Liang, Yan</creatorcontrib><title>Structure of optimal policies to periodic-review inventory models with convex costs and backorders for all values of discount factors</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>This paper describes the structure of optimal policies for discounted periodic-review single-commodity total-cost inventory control problems with fixed ordering costs for finite and infinite horizons. There are known conditions in the literature for optimality of ( s t , S t ) policies for finite-horizon problems and the optimality of ( s ,  S ) policies for infinite-horizon problems. The results of this paper cover the situation, when such assumption may not hold. This paper describes a parameter, which, together with the value of the discount factor and the horizon length, defines the structure of an optimal policy. For the infinite horizon, depending on the values of this parameter and the discount factor, an optimal policy either is an ( s ,  S ) policy or never orders inventory. For a finite horizon, depending on the values of this parameter, the discount factor, and the horizon length, there are three possible structures of an optimal policy: (1) it is an ( s t , S t ) policy, (2) it is an ( s t , S t ) policy at earlier stages and then does not order inventory, or (3) it never orders inventory. The paper also establishes continuity of optimal value functions and describes alternative optimal actions at states s t and s .</description><subject>Avi-Itzhak-Sobel:Probability</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Commodities</subject><subject>Continuity (mathematics)</subject><subject>Costs</subject><subject>Discounts</subject><subject>Horizon</subject><subject>Inventory control</subject><subject>Mathematical optimization</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Order quantity</subject><subject>Parameters</subject><subject>Policies</subject><subject>Random variables</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kd2KFDEQhRtRcFx9AO8C3tprJd2ZdF8ui3-w4IV6HTJJZTZrT2dMpWd3H8D3toYR3AUlkILiO3UqOU3zWsK5BDDvSEJvxhakaZXuh3b9pFlJbVQ7dt3wtFkBd1vddfC8eUF0AwBSDnrV_Ppay-LrUlDkKPK-pp2bxD5PySckUbPYY0k5JN8WPCS8FWk-4FxzuRe7HHAicZvqtfCZ23dcqJJwcxAb53_kErCQiLkIN03i4KaFZ7JPSOTzMlcRnedR9LJ5Ft1E-OpPPWu-f3j_7fJTe_Xl4-fLi6vW9wpquxm1M6AdDh5x7BT0OgZYRxwHr1XfO3C9lzqoEBSTIw7RjGEdDaBXsYPurHlzmrsv-SfvUu1NXsrMllYZpY3sR_WA2roJbZpjrsX5He9sL4w62oJSTJ3_g-ITcJf4OzAm7j8SvH0g2CyUZiS-KG2vK23dQvQYlyfcl0xUMNp94XDKvZVgj5nbU-aWM7fHzO2aNeqkIWbnLZa_7_u_6DerabAZ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Feinberg, Eugene A.</creator><creator>Liang, Yan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20221001</creationdate><title>Structure of optimal policies to periodic-review inventory models with convex costs and backorders for all values of discount factors</title><author>Feinberg, Eugene A. ; Liang, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-b95a705ae8cee932045fd06fe98c5244a0a4c15d2dd25a79e8f79d6f70ec2f303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Avi-Itzhak-Sobel:Probability</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Commodities</topic><topic>Continuity (mathematics)</topic><topic>Costs</topic><topic>Discounts</topic><topic>Horizon</topic><topic>Inventory control</topic><topic>Mathematical optimization</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Order quantity</topic><topic>Parameters</topic><topic>Policies</topic><topic>Random variables</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feinberg, Eugene A.</creatorcontrib><creatorcontrib>Liang, Yan</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feinberg, Eugene A.</au><au>Liang, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of optimal policies to periodic-review inventory models with convex costs and backorders for all values of discount factors</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>317</volume><issue>1</issue><spage>29</spage><epage>45</epage><pages>29-45</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>This paper describes the structure of optimal policies for discounted periodic-review single-commodity total-cost inventory control problems with fixed ordering costs for finite and infinite horizons. There are known conditions in the literature for optimality of ( s t , S t ) policies for finite-horizon problems and the optimality of ( s ,  S ) policies for infinite-horizon problems. The results of this paper cover the situation, when such assumption may not hold. This paper describes a parameter, which, together with the value of the discount factor and the horizon length, defines the structure of an optimal policy. For the infinite horizon, depending on the values of this parameter and the discount factor, an optimal policy either is an ( s ,  S ) policy or never orders inventory. For a finite horizon, depending on the values of this parameter, the discount factor, and the horizon length, there are three possible structures of an optimal policy: (1) it is an ( s t , S t ) policy, (2) it is an ( s t , S t ) policy at earlier stages and then does not order inventory, or (3) it never orders inventory. The paper also establishes continuity of optimal value functions and describes alternative optimal actions at states s t and s .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-017-2548-6</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2022-10, Vol.317 (1), p.29-45
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_2725714920
source SpringerLink Journals; Business Source Complete
subjects Avi-Itzhak-Sobel:Probability
Business and Management
Combinatorics
Commodities
Continuity (mathematics)
Costs
Discounts
Horizon
Inventory control
Mathematical optimization
Operations research
Operations Research/Decision Theory
Optimization
Order quantity
Parameters
Policies
Random variables
Theory of Computation
title Structure of optimal policies to periodic-review inventory models with convex costs and backorders for all values of discount factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20optimal%20policies%20to%20periodic-review%20inventory%20models%20with%20convex%20costs%20and%20backorders%20for%20all%20values%20of%20discount%20factors&rft.jtitle=Annals%20of%20operations%20research&rft.au=Feinberg,%20Eugene%20A.&rft.date=2022-10-01&rft.volume=317&rft.issue=1&rft.spage=29&rft.epage=45&rft.pages=29-45&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-017-2548-6&rft_dat=%3Cgale_proqu%3EA723204022%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725714920&rft_id=info:pmid/&rft_galeid=A723204022&rfr_iscdi=true