Identifying Patterns and Relationships within Noisy Acoustic Data Sets
Acoustic emissions analysis can provide key information for monitoring the structural integrity of a system, such as the behavior of bone under various loading conditions and other complex biomechanical applications. However, when analyzing acoustic emissions data from complex systems, including sys...
Gespeichert in:
Veröffentlicht in: | Johns Hopkins APL technical digest 2022-01, Vol.36 (3), p.259 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 259 |
container_title | Johns Hopkins APL technical digest |
container_volume | 36 |
creator | Balakrishnan, Krithika Bar-Kochba, Eyal Iwaskiw, Alexander S |
description | Acoustic emissions analysis can provide key information for monitoring the structural integrity of a system, such as the behavior of bone under various loading conditions and other complex biomechanical applications. However, when analyzing acoustic emissions data from complex systems, including systems that experience high-rate (103 s–1) loading, complex bending modes, unique shape effects, and multiple failure mechanisms, it is difficult to extract meaningful information and relationships because of an abundance of confounding factors. This article presents a methodology developed at the Johns Hopkins Applied Physics Laboratory (APL) for understanding fracture and characterizing acoustic signatures with distinct failure modes, leveraging techniques such as independent component analysis, self-organizing maps, and K-means clustering algorithms. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2725642767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725642767</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-4d58523cb493be85c3623493a4de970e8fadea37e7dd012a916c99af20f625443</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMoOFb_IeB6ILl5TZalWi0UFR_rcju5Y1NKZpxkkP69Bbs6Z3XOBaukV6IWRolLVglwojYg9TW7yXkvBBipmootV4FSid0xpm_-hqXQmDLHFPg7HbDEPuVdHDL_jWUXE3_pYz7yedtPucSWP2BB_kEl37KrDg-Z7s6csa_l4-fiuV6_Pq0W83U9SG1LrYNpDKh2q73aUmNaZUGdHHUg7wQ1HQZC5ciFICSgl7b1HjsQnQWjtZqx-__uMPY_E-Wy2ffTmE7LDTgwVoOzTv0B7DNIWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725642767</pqid></control><display><type>article</type><title>Identifying Patterns and Relationships within Noisy Acoustic Data Sets</title><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Balakrishnan, Krithika ; Bar-Kochba, Eyal ; Iwaskiw, Alexander S</creator><creatorcontrib>Balakrishnan, Krithika ; Bar-Kochba, Eyal ; Iwaskiw, Alexander S</creatorcontrib><description>Acoustic emissions analysis can provide key information for monitoring the structural integrity of a system, such as the behavior of bone under various loading conditions and other complex biomechanical applications. However, when analyzing acoustic emissions data from complex systems, including systems that experience high-rate (103 s–1) loading, complex bending modes, unique shape effects, and multiple failure mechanisms, it is difficult to extract meaningful information and relationships because of an abundance of confounding factors. This article presents a methodology developed at the Johns Hopkins Applied Physics Laboratory (APL) for understanding fracture and characterizing acoustic signatures with distinct failure modes, leveraging techniques such as independent component analysis, self-organizing maps, and K-means clustering algorithms.</description><identifier>ISSN: 0270-5214</identifier><identifier>EISSN: 1930-0530</identifier><language>eng</language><publisher>Laurel: Johns Hopkins University</publisher><subject>Acoustic emission ; Algorithms ; Biomechanics ; Cluster analysis ; Clustering ; Complex systems ; Data analysis ; Failure analysis ; Failure mechanisms ; Failure modes ; Independent component analysis ; Self organizing maps ; Shape effects ; Structural integrity ; Vector quantization</subject><ispartof>Johns Hopkins APL technical digest, 2022-01, Vol.36 (3), p.259</ispartof><rights>Copyright Johns Hopkins University 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Balakrishnan, Krithika</creatorcontrib><creatorcontrib>Bar-Kochba, Eyal</creatorcontrib><creatorcontrib>Iwaskiw, Alexander S</creatorcontrib><title>Identifying Patterns and Relationships within Noisy Acoustic Data Sets</title><title>Johns Hopkins APL technical digest</title><description>Acoustic emissions analysis can provide key information for monitoring the structural integrity of a system, such as the behavior of bone under various loading conditions and other complex biomechanical applications. However, when analyzing acoustic emissions data from complex systems, including systems that experience high-rate (103 s–1) loading, complex bending modes, unique shape effects, and multiple failure mechanisms, it is difficult to extract meaningful information and relationships because of an abundance of confounding factors. This article presents a methodology developed at the Johns Hopkins Applied Physics Laboratory (APL) for understanding fracture and characterizing acoustic signatures with distinct failure modes, leveraging techniques such as independent component analysis, self-organizing maps, and K-means clustering algorithms.</description><subject>Acoustic emission</subject><subject>Algorithms</subject><subject>Biomechanics</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Complex systems</subject><subject>Data analysis</subject><subject>Failure analysis</subject><subject>Failure mechanisms</subject><subject>Failure modes</subject><subject>Independent component analysis</subject><subject>Self organizing maps</subject><subject>Shape effects</subject><subject>Structural integrity</subject><subject>Vector quantization</subject><issn>0270-5214</issn><issn>1930-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjctKAzEUQIMoOFb_IeB6ILl5TZalWi0UFR_rcju5Y1NKZpxkkP69Bbs6Z3XOBaukV6IWRolLVglwojYg9TW7yXkvBBipmootV4FSid0xpm_-hqXQmDLHFPg7HbDEPuVdHDL_jWUXE3_pYz7yedtPucSWP2BB_kEl37KrDg-Z7s6csa_l4-fiuV6_Pq0W83U9SG1LrYNpDKh2q73aUmNaZUGdHHUg7wQ1HQZC5ciFICSgl7b1HjsQnQWjtZqx-__uMPY_E-Wy2ffTmE7LDTgwVoOzTv0B7DNIWw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Balakrishnan, Krithika</creator><creator>Bar-Kochba, Eyal</creator><creator>Iwaskiw, Alexander S</creator><general>Johns Hopkins University</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220101</creationdate><title>Identifying Patterns and Relationships within Noisy Acoustic Data Sets</title><author>Balakrishnan, Krithika ; Bar-Kochba, Eyal ; Iwaskiw, Alexander S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-4d58523cb493be85c3623493a4de970e8fadea37e7dd012a916c99af20f625443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic emission</topic><topic>Algorithms</topic><topic>Biomechanics</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Complex systems</topic><topic>Data analysis</topic><topic>Failure analysis</topic><topic>Failure mechanisms</topic><topic>Failure modes</topic><topic>Independent component analysis</topic><topic>Self organizing maps</topic><topic>Shape effects</topic><topic>Structural integrity</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balakrishnan, Krithika</creatorcontrib><creatorcontrib>Bar-Kochba, Eyal</creatorcontrib><creatorcontrib>Iwaskiw, Alexander S</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Johns Hopkins APL technical digest</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balakrishnan, Krithika</au><au>Bar-Kochba, Eyal</au><au>Iwaskiw, Alexander S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Patterns and Relationships within Noisy Acoustic Data Sets</atitle><jtitle>Johns Hopkins APL technical digest</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>36</volume><issue>3</issue><spage>259</spage><pages>259-</pages><issn>0270-5214</issn><eissn>1930-0530</eissn><abstract>Acoustic emissions analysis can provide key information for monitoring the structural integrity of a system, such as the behavior of bone under various loading conditions and other complex biomechanical applications. However, when analyzing acoustic emissions data from complex systems, including systems that experience high-rate (103 s–1) loading, complex bending modes, unique shape effects, and multiple failure mechanisms, it is difficult to extract meaningful information and relationships because of an abundance of confounding factors. This article presents a methodology developed at the Johns Hopkins Applied Physics Laboratory (APL) for understanding fracture and characterizing acoustic signatures with distinct failure modes, leveraging techniques such as independent component analysis, self-organizing maps, and K-means clustering algorithms.</abstract><cop>Laurel</cop><pub>Johns Hopkins University</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-5214 |
ispartof | Johns Hopkins APL technical digest, 2022-01, Vol.36 (3), p.259 |
issn | 0270-5214 1930-0530 |
language | eng |
recordid | cdi_proquest_journals_2725642767 |
source | Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Acoustic emission Algorithms Biomechanics Cluster analysis Clustering Complex systems Data analysis Failure analysis Failure mechanisms Failure modes Independent component analysis Self organizing maps Shape effects Structural integrity Vector quantization |
title | Identifying Patterns and Relationships within Noisy Acoustic Data Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Patterns%20and%20Relationships%20within%20Noisy%20Acoustic%20Data%20Sets&rft.jtitle=Johns%20Hopkins%20APL%20technical%20digest&rft.au=Balakrishnan,%20Krithika&rft.date=2022-01-01&rft.volume=36&rft.issue=3&rft.spage=259&rft.pages=259-&rft.issn=0270-5214&rft.eissn=1930-0530&rft_id=info:doi/&rft_dat=%3Cproquest%3E2725642767%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725642767&rft_id=info:pmid/&rfr_iscdi=true |