Identifying Patterns and Relationships within Noisy Acoustic Data Sets

Acoustic emissions analysis can provide key information for monitoring the structural integrity of a system, such as the behavior of bone under various loading conditions and other complex biomechanical applications. However, when analyzing acoustic emissions data from complex systems, including sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Johns Hopkins APL technical digest 2022-01, Vol.36 (3), p.259
Hauptverfasser: Balakrishnan, Krithika, Bar-Kochba, Eyal, Iwaskiw, Alexander S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 259
container_title Johns Hopkins APL technical digest
container_volume 36
creator Balakrishnan, Krithika
Bar-Kochba, Eyal
Iwaskiw, Alexander S
description Acoustic emissions analysis can provide key information for monitoring the structural integrity of a system, such as the behavior of bone under various loading conditions and other complex biomechanical applications. However, when analyzing acoustic emissions data from complex systems, including systems that experience high-rate (103 s–1) loading, complex bending modes, unique shape effects, and multiple failure mechanisms, it is difficult to extract meaningful information and relationships because of an abundance of confounding factors. This article presents a methodology developed at the Johns Hopkins Applied Physics Laboratory (APL) for understanding fracture and characterizing acoustic signatures with distinct failure modes, leveraging techniques such as independent component analysis, self-organizing maps, and K-means clustering algorithms.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2725642767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725642767</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-4d58523cb493be85c3623493a4de970e8fadea37e7dd012a916c99af20f625443</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMoOFb_IeB6ILl5TZalWi0UFR_rcju5Y1NKZpxkkP69Bbs6Z3XOBaukV6IWRolLVglwojYg9TW7yXkvBBipmootV4FSid0xpm_-hqXQmDLHFPg7HbDEPuVdHDL_jWUXE3_pYz7yedtPucSWP2BB_kEl37KrDg-Z7s6csa_l4-fiuV6_Pq0W83U9SG1LrYNpDKh2q73aUmNaZUGdHHUg7wQ1HQZC5ciFICSgl7b1HjsQnQWjtZqx-__uMPY_E-Wy2ffTmE7LDTgwVoOzTv0B7DNIWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725642767</pqid></control><display><type>article</type><title>Identifying Patterns and Relationships within Noisy Acoustic Data Sets</title><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Balakrishnan, Krithika ; Bar-Kochba, Eyal ; Iwaskiw, Alexander S</creator><creatorcontrib>Balakrishnan, Krithika ; Bar-Kochba, Eyal ; Iwaskiw, Alexander S</creatorcontrib><description>Acoustic emissions analysis can provide key information for monitoring the structural integrity of a system, such as the behavior of bone under various loading conditions and other complex biomechanical applications. However, when analyzing acoustic emissions data from complex systems, including systems that experience high-rate (103 s–1) loading, complex bending modes, unique shape effects, and multiple failure mechanisms, it is difficult to extract meaningful information and relationships because of an abundance of confounding factors. This article presents a methodology developed at the Johns Hopkins Applied Physics Laboratory (APL) for understanding fracture and characterizing acoustic signatures with distinct failure modes, leveraging techniques such as independent component analysis, self-organizing maps, and K-means clustering algorithms.</description><identifier>ISSN: 0270-5214</identifier><identifier>EISSN: 1930-0530</identifier><language>eng</language><publisher>Laurel: Johns Hopkins University</publisher><subject>Acoustic emission ; Algorithms ; Biomechanics ; Cluster analysis ; Clustering ; Complex systems ; Data analysis ; Failure analysis ; Failure mechanisms ; Failure modes ; Independent component analysis ; Self organizing maps ; Shape effects ; Structural integrity ; Vector quantization</subject><ispartof>Johns Hopkins APL technical digest, 2022-01, Vol.36 (3), p.259</ispartof><rights>Copyright Johns Hopkins University 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Balakrishnan, Krithika</creatorcontrib><creatorcontrib>Bar-Kochba, Eyal</creatorcontrib><creatorcontrib>Iwaskiw, Alexander S</creatorcontrib><title>Identifying Patterns and Relationships within Noisy Acoustic Data Sets</title><title>Johns Hopkins APL technical digest</title><description>Acoustic emissions analysis can provide key information for monitoring the structural integrity of a system, such as the behavior of bone under various loading conditions and other complex biomechanical applications. However, when analyzing acoustic emissions data from complex systems, including systems that experience high-rate (103 s–1) loading, complex bending modes, unique shape effects, and multiple failure mechanisms, it is difficult to extract meaningful information and relationships because of an abundance of confounding factors. This article presents a methodology developed at the Johns Hopkins Applied Physics Laboratory (APL) for understanding fracture and characterizing acoustic signatures with distinct failure modes, leveraging techniques such as independent component analysis, self-organizing maps, and K-means clustering algorithms.</description><subject>Acoustic emission</subject><subject>Algorithms</subject><subject>Biomechanics</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Complex systems</subject><subject>Data analysis</subject><subject>Failure analysis</subject><subject>Failure mechanisms</subject><subject>Failure modes</subject><subject>Independent component analysis</subject><subject>Self organizing maps</subject><subject>Shape effects</subject><subject>Structural integrity</subject><subject>Vector quantization</subject><issn>0270-5214</issn><issn>1930-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjctKAzEUQIMoOFb_IeB6ILl5TZalWi0UFR_rcju5Y1NKZpxkkP69Bbs6Z3XOBaukV6IWRolLVglwojYg9TW7yXkvBBipmootV4FSid0xpm_-hqXQmDLHFPg7HbDEPuVdHDL_jWUXE3_pYz7yedtPucSWP2BB_kEl37KrDg-Z7s6csa_l4-fiuV6_Pq0W83U9SG1LrYNpDKh2q73aUmNaZUGdHHUg7wQ1HQZC5ciFICSgl7b1HjsQnQWjtZqx-__uMPY_E-Wy2ffTmE7LDTgwVoOzTv0B7DNIWw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Balakrishnan, Krithika</creator><creator>Bar-Kochba, Eyal</creator><creator>Iwaskiw, Alexander S</creator><general>Johns Hopkins University</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220101</creationdate><title>Identifying Patterns and Relationships within Noisy Acoustic Data Sets</title><author>Balakrishnan, Krithika ; Bar-Kochba, Eyal ; Iwaskiw, Alexander S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-4d58523cb493be85c3623493a4de970e8fadea37e7dd012a916c99af20f625443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic emission</topic><topic>Algorithms</topic><topic>Biomechanics</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Complex systems</topic><topic>Data analysis</topic><topic>Failure analysis</topic><topic>Failure mechanisms</topic><topic>Failure modes</topic><topic>Independent component analysis</topic><topic>Self organizing maps</topic><topic>Shape effects</topic><topic>Structural integrity</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balakrishnan, Krithika</creatorcontrib><creatorcontrib>Bar-Kochba, Eyal</creatorcontrib><creatorcontrib>Iwaskiw, Alexander S</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Johns Hopkins APL technical digest</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balakrishnan, Krithika</au><au>Bar-Kochba, Eyal</au><au>Iwaskiw, Alexander S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Patterns and Relationships within Noisy Acoustic Data Sets</atitle><jtitle>Johns Hopkins APL technical digest</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>36</volume><issue>3</issue><spage>259</spage><pages>259-</pages><issn>0270-5214</issn><eissn>1930-0530</eissn><abstract>Acoustic emissions analysis can provide key information for monitoring the structural integrity of a system, such as the behavior of bone under various loading conditions and other complex biomechanical applications. However, when analyzing acoustic emissions data from complex systems, including systems that experience high-rate (103 s–1) loading, complex bending modes, unique shape effects, and multiple failure mechanisms, it is difficult to extract meaningful information and relationships because of an abundance of confounding factors. This article presents a methodology developed at the Johns Hopkins Applied Physics Laboratory (APL) for understanding fracture and characterizing acoustic signatures with distinct failure modes, leveraging techniques such as independent component analysis, self-organizing maps, and K-means clustering algorithms.</abstract><cop>Laurel</cop><pub>Johns Hopkins University</pub></addata></record>
fulltext fulltext
identifier ISSN: 0270-5214
ispartof Johns Hopkins APL technical digest, 2022-01, Vol.36 (3), p.259
issn 0270-5214
1930-0530
language eng
recordid cdi_proquest_journals_2725642767
source Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Acoustic emission
Algorithms
Biomechanics
Cluster analysis
Clustering
Complex systems
Data analysis
Failure analysis
Failure mechanisms
Failure modes
Independent component analysis
Self organizing maps
Shape effects
Structural integrity
Vector quantization
title Identifying Patterns and Relationships within Noisy Acoustic Data Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Patterns%20and%20Relationships%20within%20Noisy%20Acoustic%20Data%20Sets&rft.jtitle=Johns%20Hopkins%20APL%20technical%20digest&rft.au=Balakrishnan,%20Krithika&rft.date=2022-01-01&rft.volume=36&rft.issue=3&rft.spage=259&rft.pages=259-&rft.issn=0270-5214&rft.eissn=1930-0530&rft_id=info:doi/&rft_dat=%3Cproquest%3E2725642767%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725642767&rft_id=info:pmid/&rfr_iscdi=true