Highly compressible piezoresistive strain sensor with a semi-IPN structure based on PU sponge/RTV silicone rubber/MWCNTs
Recently electrically conductive piezoresistive sensors with high deformability and compressibility based on nanostructured polymeric foams have attracted great attention. The presence of a rubbery phase inside the structure of these materials leads to a dramatic enhancement of flexibility and press...
Gespeichert in:
Veröffentlicht in: | Journal of polymer research 2022-11, Vol.29 (11), Article 471 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Journal of polymer research |
container_volume | 29 |
creator | Eghbalinia, Siroos Katbab, AliAsghar Nazockdast, Hossein Katbab, Pouya |
description | Recently electrically conductive piezoresistive sensors with high deformability and compressibility based on nanostructured polymeric foams have attracted great attention. The presence of a rubbery phase inside the structure of these materials leads to a dramatic enhancement of flexibility and pressure sensitivity. In the present work, attempts have been made to fabricate a highly deformable and structural recoverable electrically conductive piezoresistive sponge as a strain sensor with a semi-interpenetrating network structure via the impregnation process of pre-fabricated polyurethane sponges into the doping solution composed of crosslinkable room temperature vulcanized silicone rubber (RTVSR) and multiwall carbon nanotubes (MWCNTs). Crosslinking of rubbery phase in conjunction with interconnected MWCNTs network resulted in outstanding properties. Excellent strain sensing (gauge factor value up to 3.71) and compressibility (decreasing 60% of compression set) were observed under compressive pressure as a result of the presence of a rubbery phase with an optimized elasticity. The obtained results implied the structure stability under cyclic deformations indicating strong intermolecular adhesion between MWCNTs and the rubbery phase. |
doi_str_mv | 10.1007/s10965-022-03315-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2725634542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723032787</galeid><sourcerecordid>A723032787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-9970aab2c57c41e1ff7486ce1118fa6559a9587c23486e29636f3481b290b9563</originalsourceid><addsrcrecordid>eNp9UUtP3DAQjqpWKqX9Az1Z4hzWj3UcH9GKlwQUVQscLcdMFqNsHDwJj_76zpJK3Ko5zOv77Jn5iuKn4IeCc7NAwW2lSy5lyZUSurSfij2hjSxrq_Rninctayr-tfiG-Mi51qaq94rXs7h56N5YSNshA2JsOmBDhD-JsohjfAaGY_axZwg9psxe4vjAPGXbWJ5fX-26UxinDKzxCPcs9ez6huGQ-g0sfq9vGcYuhtQDy1PTQF5c3q2u1vi9-NL6DuHHP79f3Jwcr1dn5cWv0_PV0UUZZF2PpbWGe9_IoE1YChBta5Z1FUAIUbe-0tp6q2sTpKIySFupqqVQNNLyxupK7RcH87tDTk8T4Oge05R7-tJJIwmw1EtJqMMZtfEduNi3iXYOZPe05m74NlL9yEjFlTS1IYKcCSEnxAytG3Lc-vzmBHc7SdwsiaO7u3dJnCWSmklIYDpP_pjlP6y_JTeOZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725634542</pqid></control><display><type>article</type><title>Highly compressible piezoresistive strain sensor with a semi-IPN structure based on PU sponge/RTV silicone rubber/MWCNTs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Eghbalinia, Siroos ; Katbab, AliAsghar ; Nazockdast, Hossein ; Katbab, Pouya</creator><creatorcontrib>Eghbalinia, Siroos ; Katbab, AliAsghar ; Nazockdast, Hossein ; Katbab, Pouya</creatorcontrib><description>Recently electrically conductive piezoresistive sensors with high deformability and compressibility based on nanostructured polymeric foams have attracted great attention. The presence of a rubbery phase inside the structure of these materials leads to a dramatic enhancement of flexibility and pressure sensitivity. In the present work, attempts have been made to fabricate a highly deformable and structural recoverable electrically conductive piezoresistive sponge as a strain sensor with a semi-interpenetrating network structure via the impregnation process of pre-fabricated polyurethane sponges into the doping solution composed of crosslinkable room temperature vulcanized silicone rubber (RTVSR) and multiwall carbon nanotubes (MWCNTs). Crosslinking of rubbery phase in conjunction with interconnected MWCNTs network resulted in outstanding properties. Excellent strain sensing (gauge factor value up to 3.71) and compressibility (decreasing 60% of compression set) were observed under compressive pressure as a result of the presence of a rubbery phase with an optimized elasticity. The obtained results implied the structure stability under cyclic deformations indicating strong intermolecular adhesion between MWCNTs and the rubbery phase.</description><identifier>ISSN: 1022-9760</identifier><identifier>EISSN: 1572-8935</identifier><identifier>DOI: 10.1007/s10965-022-03315-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adhesive strength ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Compressibility ; Crosslinked polymers ; Crosslinking ; Deformation ; Electric properties ; Formability ; Industrial Chemistry/Chemical Engineering ; Interpenetrating networks ; Multi wall carbon nanotubes ; Nanotubes ; Original Paper ; Plastic foam ; Polymer Sciences ; Polyurethane resins ; Polyurethanes ; Room temperature ; Silicone rubber ; Silicones ; Strain gauges ; Structural stability</subject><ispartof>Journal of polymer research, 2022-11, Vol.29 (11), Article 471</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-9970aab2c57c41e1ff7486ce1118fa6559a9587c23486e29636f3481b290b9563</citedby><cites>FETCH-LOGICAL-c288t-9970aab2c57c41e1ff7486ce1118fa6559a9587c23486e29636f3481b290b9563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10965-022-03315-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10965-022-03315-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Eghbalinia, Siroos</creatorcontrib><creatorcontrib>Katbab, AliAsghar</creatorcontrib><creatorcontrib>Nazockdast, Hossein</creatorcontrib><creatorcontrib>Katbab, Pouya</creatorcontrib><title>Highly compressible piezoresistive strain sensor with a semi-IPN structure based on PU sponge/RTV silicone rubber/MWCNTs</title><title>Journal of polymer research</title><addtitle>J Polym Res</addtitle><description>Recently electrically conductive piezoresistive sensors with high deformability and compressibility based on nanostructured polymeric foams have attracted great attention. The presence of a rubbery phase inside the structure of these materials leads to a dramatic enhancement of flexibility and pressure sensitivity. In the present work, attempts have been made to fabricate a highly deformable and structural recoverable electrically conductive piezoresistive sponge as a strain sensor with a semi-interpenetrating network structure via the impregnation process of pre-fabricated polyurethane sponges into the doping solution composed of crosslinkable room temperature vulcanized silicone rubber (RTVSR) and multiwall carbon nanotubes (MWCNTs). Crosslinking of rubbery phase in conjunction with interconnected MWCNTs network resulted in outstanding properties. Excellent strain sensing (gauge factor value up to 3.71) and compressibility (decreasing 60% of compression set) were observed under compressive pressure as a result of the presence of a rubbery phase with an optimized elasticity. The obtained results implied the structure stability under cyclic deformations indicating strong intermolecular adhesion between MWCNTs and the rubbery phase.</description><subject>Adhesive strength</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Compressibility</subject><subject>Crosslinked polymers</subject><subject>Crosslinking</subject><subject>Deformation</subject><subject>Electric properties</subject><subject>Formability</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Interpenetrating networks</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotubes</subject><subject>Original Paper</subject><subject>Plastic foam</subject><subject>Polymer Sciences</subject><subject>Polyurethane resins</subject><subject>Polyurethanes</subject><subject>Room temperature</subject><subject>Silicone rubber</subject><subject>Silicones</subject><subject>Strain gauges</subject><subject>Structural stability</subject><issn>1022-9760</issn><issn>1572-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UUtP3DAQjqpWKqX9Az1Z4hzWj3UcH9GKlwQUVQscLcdMFqNsHDwJj_76zpJK3Ko5zOv77Jn5iuKn4IeCc7NAwW2lSy5lyZUSurSfij2hjSxrq_Rninctayr-tfiG-Mi51qaq94rXs7h56N5YSNshA2JsOmBDhD-JsohjfAaGY_axZwg9psxe4vjAPGXbWJ5fX-26UxinDKzxCPcs9ez6huGQ-g0sfq9vGcYuhtQDy1PTQF5c3q2u1vi9-NL6DuHHP79f3Jwcr1dn5cWv0_PV0UUZZF2PpbWGe9_IoE1YChBta5Z1FUAIUbe-0tp6q2sTpKIySFupqqVQNNLyxupK7RcH87tDTk8T4Oge05R7-tJJIwmw1EtJqMMZtfEduNi3iXYOZPe05m74NlL9yEjFlTS1IYKcCSEnxAytG3Lc-vzmBHc7SdwsiaO7u3dJnCWSmklIYDpP_pjlP6y_JTeOZQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Eghbalinia, Siroos</creator><creator>Katbab, AliAsghar</creator><creator>Nazockdast, Hossein</creator><creator>Katbab, Pouya</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20221101</creationdate><title>Highly compressible piezoresistive strain sensor with a semi-IPN structure based on PU sponge/RTV silicone rubber/MWCNTs</title><author>Eghbalinia, Siroos ; Katbab, AliAsghar ; Nazockdast, Hossein ; Katbab, Pouya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-9970aab2c57c41e1ff7486ce1118fa6559a9587c23486e29636f3481b290b9563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adhesive strength</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Compressibility</topic><topic>Crosslinked polymers</topic><topic>Crosslinking</topic><topic>Deformation</topic><topic>Electric properties</topic><topic>Formability</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Interpenetrating networks</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotubes</topic><topic>Original Paper</topic><topic>Plastic foam</topic><topic>Polymer Sciences</topic><topic>Polyurethane resins</topic><topic>Polyurethanes</topic><topic>Room temperature</topic><topic>Silicone rubber</topic><topic>Silicones</topic><topic>Strain gauges</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eghbalinia, Siroos</creatorcontrib><creatorcontrib>Katbab, AliAsghar</creatorcontrib><creatorcontrib>Nazockdast, Hossein</creatorcontrib><creatorcontrib>Katbab, Pouya</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of polymer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eghbalinia, Siroos</au><au>Katbab, AliAsghar</au><au>Nazockdast, Hossein</au><au>Katbab, Pouya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly compressible piezoresistive strain sensor with a semi-IPN structure based on PU sponge/RTV silicone rubber/MWCNTs</atitle><jtitle>Journal of polymer research</jtitle><stitle>J Polym Res</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>29</volume><issue>11</issue><artnum>471</artnum><issn>1022-9760</issn><eissn>1572-8935</eissn><abstract>Recently electrically conductive piezoresistive sensors with high deformability and compressibility based on nanostructured polymeric foams have attracted great attention. The presence of a rubbery phase inside the structure of these materials leads to a dramatic enhancement of flexibility and pressure sensitivity. In the present work, attempts have been made to fabricate a highly deformable and structural recoverable electrically conductive piezoresistive sponge as a strain sensor with a semi-interpenetrating network structure via the impregnation process of pre-fabricated polyurethane sponges into the doping solution composed of crosslinkable room temperature vulcanized silicone rubber (RTVSR) and multiwall carbon nanotubes (MWCNTs). Crosslinking of rubbery phase in conjunction with interconnected MWCNTs network resulted in outstanding properties. Excellent strain sensing (gauge factor value up to 3.71) and compressibility (decreasing 60% of compression set) were observed under compressive pressure as a result of the presence of a rubbery phase with an optimized elasticity. The obtained results implied the structure stability under cyclic deformations indicating strong intermolecular adhesion between MWCNTs and the rubbery phase.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10965-022-03315-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-9760 |
ispartof | Journal of polymer research, 2022-11, Vol.29 (11), Article 471 |
issn | 1022-9760 1572-8935 |
language | eng |
recordid | cdi_proquest_journals_2725634542 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adhesive strength Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Compressibility Crosslinked polymers Crosslinking Deformation Electric properties Formability Industrial Chemistry/Chemical Engineering Interpenetrating networks Multi wall carbon nanotubes Nanotubes Original Paper Plastic foam Polymer Sciences Polyurethane resins Polyurethanes Room temperature Silicone rubber Silicones Strain gauges Structural stability |
title | Highly compressible piezoresistive strain sensor with a semi-IPN structure based on PU sponge/RTV silicone rubber/MWCNTs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20compressible%20piezoresistive%20strain%20sensor%20with%20a%20semi-IPN%20structure%20based%20on%20PU%20sponge/RTV%20silicone%20rubber/MWCNTs&rft.jtitle=Journal%20of%20polymer%20research&rft.au=Eghbalinia,%20Siroos&rft.date=2022-11-01&rft.volume=29&rft.issue=11&rft.artnum=471&rft.issn=1022-9760&rft.eissn=1572-8935&rft_id=info:doi/10.1007/s10965-022-03315-9&rft_dat=%3Cgale_proqu%3EA723032787%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725634542&rft_id=info:pmid/&rft_galeid=A723032787&rfr_iscdi=true |