Highly compressible piezoresistive strain sensor with a semi-IPN structure based on PU sponge/RTV silicone rubber/MWCNTs

Recently electrically conductive piezoresistive sensors with high deformability and compressibility based on nanostructured polymeric foams have attracted great attention. The presence of a rubbery phase inside the structure of these materials leads to a dramatic enhancement of flexibility and press...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer research 2022-11, Vol.29 (11), Article 471
Hauptverfasser: Eghbalinia, Siroos, Katbab, AliAsghar, Nazockdast, Hossein, Katbab, Pouya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Journal of polymer research
container_volume 29
creator Eghbalinia, Siroos
Katbab, AliAsghar
Nazockdast, Hossein
Katbab, Pouya
description Recently electrically conductive piezoresistive sensors with high deformability and compressibility based on nanostructured polymeric foams have attracted great attention. The presence of a rubbery phase inside the structure of these materials leads to a dramatic enhancement of flexibility and pressure sensitivity. In the present work, attempts have been made to fabricate a highly deformable and structural recoverable electrically conductive piezoresistive sponge as a strain sensor with a semi-interpenetrating network structure via the impregnation process of pre-fabricated polyurethane sponges into the doping solution composed of crosslinkable room temperature vulcanized silicone rubber (RTVSR) and multiwall carbon nanotubes (MWCNTs). Crosslinking of rubbery phase in conjunction with interconnected MWCNTs network resulted in outstanding properties. Excellent strain sensing (gauge factor value up to 3.71) and compressibility (decreasing 60% of compression set) were observed under compressive pressure as a result of the presence of a rubbery phase with an optimized elasticity. The obtained results implied the structure stability under cyclic deformations indicating strong intermolecular adhesion between MWCNTs and the rubbery phase.
doi_str_mv 10.1007/s10965-022-03315-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2725634542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723032787</galeid><sourcerecordid>A723032787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-9970aab2c57c41e1ff7486ce1118fa6559a9587c23486e29636f3481b290b9563</originalsourceid><addsrcrecordid>eNp9UUtP3DAQjqpWKqX9Az1Z4hzWj3UcH9GKlwQUVQscLcdMFqNsHDwJj_76zpJK3Ko5zOv77Jn5iuKn4IeCc7NAwW2lSy5lyZUSurSfij2hjSxrq_Rninctayr-tfiG-Mi51qaq94rXs7h56N5YSNshA2JsOmBDhD-JsohjfAaGY_axZwg9psxe4vjAPGXbWJ5fX-26UxinDKzxCPcs9ez6huGQ-g0sfq9vGcYuhtQDy1PTQF5c3q2u1vi9-NL6DuHHP79f3Jwcr1dn5cWv0_PV0UUZZF2PpbWGe9_IoE1YChBta5Z1FUAIUbe-0tp6q2sTpKIySFupqqVQNNLyxupK7RcH87tDTk8T4Oge05R7-tJJIwmw1EtJqMMZtfEduNi3iXYOZPe05m74NlL9yEjFlTS1IYKcCSEnxAytG3Lc-vzmBHc7SdwsiaO7u3dJnCWSmklIYDpP_pjlP6y_JTeOZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725634542</pqid></control><display><type>article</type><title>Highly compressible piezoresistive strain sensor with a semi-IPN structure based on PU sponge/RTV silicone rubber/MWCNTs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Eghbalinia, Siroos ; Katbab, AliAsghar ; Nazockdast, Hossein ; Katbab, Pouya</creator><creatorcontrib>Eghbalinia, Siroos ; Katbab, AliAsghar ; Nazockdast, Hossein ; Katbab, Pouya</creatorcontrib><description>Recently electrically conductive piezoresistive sensors with high deformability and compressibility based on nanostructured polymeric foams have attracted great attention. The presence of a rubbery phase inside the structure of these materials leads to a dramatic enhancement of flexibility and pressure sensitivity. In the present work, attempts have been made to fabricate a highly deformable and structural recoverable electrically conductive piezoresistive sponge as a strain sensor with a semi-interpenetrating network structure via the impregnation process of pre-fabricated polyurethane sponges into the doping solution composed of crosslinkable room temperature vulcanized silicone rubber (RTVSR) and multiwall carbon nanotubes (MWCNTs). Crosslinking of rubbery phase in conjunction with interconnected MWCNTs network resulted in outstanding properties. Excellent strain sensing (gauge factor value up to 3.71) and compressibility (decreasing 60% of compression set) were observed under compressive pressure as a result of the presence of a rubbery phase with an optimized elasticity. The obtained results implied the structure stability under cyclic deformations indicating strong intermolecular adhesion between MWCNTs and the rubbery phase.</description><identifier>ISSN: 1022-9760</identifier><identifier>EISSN: 1572-8935</identifier><identifier>DOI: 10.1007/s10965-022-03315-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adhesive strength ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Compressibility ; Crosslinked polymers ; Crosslinking ; Deformation ; Electric properties ; Formability ; Industrial Chemistry/Chemical Engineering ; Interpenetrating networks ; Multi wall carbon nanotubes ; Nanotubes ; Original Paper ; Plastic foam ; Polymer Sciences ; Polyurethane resins ; Polyurethanes ; Room temperature ; Silicone rubber ; Silicones ; Strain gauges ; Structural stability</subject><ispartof>Journal of polymer research, 2022-11, Vol.29 (11), Article 471</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-9970aab2c57c41e1ff7486ce1118fa6559a9587c23486e29636f3481b290b9563</citedby><cites>FETCH-LOGICAL-c288t-9970aab2c57c41e1ff7486ce1118fa6559a9587c23486e29636f3481b290b9563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10965-022-03315-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10965-022-03315-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Eghbalinia, Siroos</creatorcontrib><creatorcontrib>Katbab, AliAsghar</creatorcontrib><creatorcontrib>Nazockdast, Hossein</creatorcontrib><creatorcontrib>Katbab, Pouya</creatorcontrib><title>Highly compressible piezoresistive strain sensor with a semi-IPN structure based on PU sponge/RTV silicone rubber/MWCNTs</title><title>Journal of polymer research</title><addtitle>J Polym Res</addtitle><description>Recently electrically conductive piezoresistive sensors with high deformability and compressibility based on nanostructured polymeric foams have attracted great attention. The presence of a rubbery phase inside the structure of these materials leads to a dramatic enhancement of flexibility and pressure sensitivity. In the present work, attempts have been made to fabricate a highly deformable and structural recoverable electrically conductive piezoresistive sponge as a strain sensor with a semi-interpenetrating network structure via the impregnation process of pre-fabricated polyurethane sponges into the doping solution composed of crosslinkable room temperature vulcanized silicone rubber (RTVSR) and multiwall carbon nanotubes (MWCNTs). Crosslinking of rubbery phase in conjunction with interconnected MWCNTs network resulted in outstanding properties. Excellent strain sensing (gauge factor value up to 3.71) and compressibility (decreasing 60% of compression set) were observed under compressive pressure as a result of the presence of a rubbery phase with an optimized elasticity. The obtained results implied the structure stability under cyclic deformations indicating strong intermolecular adhesion between MWCNTs and the rubbery phase.</description><subject>Adhesive strength</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Compressibility</subject><subject>Crosslinked polymers</subject><subject>Crosslinking</subject><subject>Deformation</subject><subject>Electric properties</subject><subject>Formability</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Interpenetrating networks</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotubes</subject><subject>Original Paper</subject><subject>Plastic foam</subject><subject>Polymer Sciences</subject><subject>Polyurethane resins</subject><subject>Polyurethanes</subject><subject>Room temperature</subject><subject>Silicone rubber</subject><subject>Silicones</subject><subject>Strain gauges</subject><subject>Structural stability</subject><issn>1022-9760</issn><issn>1572-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UUtP3DAQjqpWKqX9Az1Z4hzWj3UcH9GKlwQUVQscLcdMFqNsHDwJj_76zpJK3Ko5zOv77Jn5iuKn4IeCc7NAwW2lSy5lyZUSurSfij2hjSxrq_Rninctayr-tfiG-Mi51qaq94rXs7h56N5YSNshA2JsOmBDhD-JsohjfAaGY_axZwg9psxe4vjAPGXbWJ5fX-26UxinDKzxCPcs9ez6huGQ-g0sfq9vGcYuhtQDy1PTQF5c3q2u1vi9-NL6DuHHP79f3Jwcr1dn5cWv0_PV0UUZZF2PpbWGe9_IoE1YChBta5Z1FUAIUbe-0tp6q2sTpKIySFupqqVQNNLyxupK7RcH87tDTk8T4Oge05R7-tJJIwmw1EtJqMMZtfEduNi3iXYOZPe05m74NlL9yEjFlTS1IYKcCSEnxAytG3Lc-vzmBHc7SdwsiaO7u3dJnCWSmklIYDpP_pjlP6y_JTeOZQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Eghbalinia, Siroos</creator><creator>Katbab, AliAsghar</creator><creator>Nazockdast, Hossein</creator><creator>Katbab, Pouya</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20221101</creationdate><title>Highly compressible piezoresistive strain sensor with a semi-IPN structure based on PU sponge/RTV silicone rubber/MWCNTs</title><author>Eghbalinia, Siroos ; Katbab, AliAsghar ; Nazockdast, Hossein ; Katbab, Pouya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-9970aab2c57c41e1ff7486ce1118fa6559a9587c23486e29636f3481b290b9563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adhesive strength</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Compressibility</topic><topic>Crosslinked polymers</topic><topic>Crosslinking</topic><topic>Deformation</topic><topic>Electric properties</topic><topic>Formability</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Interpenetrating networks</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotubes</topic><topic>Original Paper</topic><topic>Plastic foam</topic><topic>Polymer Sciences</topic><topic>Polyurethane resins</topic><topic>Polyurethanes</topic><topic>Room temperature</topic><topic>Silicone rubber</topic><topic>Silicones</topic><topic>Strain gauges</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eghbalinia, Siroos</creatorcontrib><creatorcontrib>Katbab, AliAsghar</creatorcontrib><creatorcontrib>Nazockdast, Hossein</creatorcontrib><creatorcontrib>Katbab, Pouya</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of polymer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eghbalinia, Siroos</au><au>Katbab, AliAsghar</au><au>Nazockdast, Hossein</au><au>Katbab, Pouya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly compressible piezoresistive strain sensor with a semi-IPN structure based on PU sponge/RTV silicone rubber/MWCNTs</atitle><jtitle>Journal of polymer research</jtitle><stitle>J Polym Res</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>29</volume><issue>11</issue><artnum>471</artnum><issn>1022-9760</issn><eissn>1572-8935</eissn><abstract>Recently electrically conductive piezoresistive sensors with high deformability and compressibility based on nanostructured polymeric foams have attracted great attention. The presence of a rubbery phase inside the structure of these materials leads to a dramatic enhancement of flexibility and pressure sensitivity. In the present work, attempts have been made to fabricate a highly deformable and structural recoverable electrically conductive piezoresistive sponge as a strain sensor with a semi-interpenetrating network structure via the impregnation process of pre-fabricated polyurethane sponges into the doping solution composed of crosslinkable room temperature vulcanized silicone rubber (RTVSR) and multiwall carbon nanotubes (MWCNTs). Crosslinking of rubbery phase in conjunction with interconnected MWCNTs network resulted in outstanding properties. Excellent strain sensing (gauge factor value up to 3.71) and compressibility (decreasing 60% of compression set) were observed under compressive pressure as a result of the presence of a rubbery phase with an optimized elasticity. The obtained results implied the structure stability under cyclic deformations indicating strong intermolecular adhesion between MWCNTs and the rubbery phase.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10965-022-03315-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 1022-9760
ispartof Journal of polymer research, 2022-11, Vol.29 (11), Article 471
issn 1022-9760
1572-8935
language eng
recordid cdi_proquest_journals_2725634542
source SpringerLink Journals - AutoHoldings
subjects Adhesive strength
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Compressibility
Crosslinked polymers
Crosslinking
Deformation
Electric properties
Formability
Industrial Chemistry/Chemical Engineering
Interpenetrating networks
Multi wall carbon nanotubes
Nanotubes
Original Paper
Plastic foam
Polymer Sciences
Polyurethane resins
Polyurethanes
Room temperature
Silicone rubber
Silicones
Strain gauges
Structural stability
title Highly compressible piezoresistive strain sensor with a semi-IPN structure based on PU sponge/RTV silicone rubber/MWCNTs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20compressible%20piezoresistive%20strain%20sensor%20with%20a%20semi-IPN%20structure%20based%20on%20PU%20sponge/RTV%20silicone%20rubber/MWCNTs&rft.jtitle=Journal%20of%20polymer%20research&rft.au=Eghbalinia,%20Siroos&rft.date=2022-11-01&rft.volume=29&rft.issue=11&rft.artnum=471&rft.issn=1022-9760&rft.eissn=1572-8935&rft_id=info:doi/10.1007/s10965-022-03315-9&rft_dat=%3Cgale_proqu%3EA723032787%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725634542&rft_id=info:pmid/&rft_galeid=A723032787&rfr_iscdi=true