A Bayesian Approach for Data-Driven Dynamic Equation Discovery
Many real-world scientific and engineering processes are governed by complex nonlinear interactions, and differential equations are commonly used to explain the dynamics of these complex systems. While the differential equations generally capture the dynamics of the system, they impose a rigid model...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2022-12, Vol.27 (4), p.728-747 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 747 |
---|---|
container_issue | 4 |
container_start_page | 728 |
container_title | Journal of agricultural, biological, and environmental statistics |
container_volume | 27 |
creator | North, Joshua S. Wikle, Christopher K. Schliep, Erin M. |
description | Many real-world scientific and engineering processes are governed by complex nonlinear interactions, and differential equations are commonly used to explain the dynamics of these complex systems. While the differential equations generally capture the dynamics of the system, they impose a rigid modeling structure that assumes the dynamics of the system are known. Even when some of the dynamical relationships are known, rarely do we know the form of the governing equations. Learning these governing equations can improve our understanding of the mechanisms driving the complex systems. Here, we present a Bayesian data-driven approach to nonlinear dynamic equation discovery. The Bayesian framework can accommodate measurement noise and missing data, which are common in these systems, and accounts for model parameter uncertainty. We illustrate our method using simulated data as well as three real-world applications for which dynamic equations are used to study real-world processes.
Supplementary materials accompanying this paper appear online. |
doi_str_mv | 10.1007/s13253-022-00514-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2725632054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723031412</galeid><sourcerecordid>A723031412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d06aa6db65ea43ea88d3d0e360aafcb7ba891152fb005f376736f4a46e310eaa3</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhoMoOKd_wKuCV15k5qNNuhthuqmDgeDHdThtk5mxNVvSDvvvjVaQ3UguEg7Pm_PAi9AlJSNKiLwJlLOMY8IYJiSjKaZHaEAzLjETY34c3yTPsKRUnqKzEFaEUC4IG6DbSXIHnQ4W6mSy3XoH5UdinE-m0ACeervXdTLtatjYMpntWmisiwMbSrfXvjtHJwbWQV_83kP0_jB7u3_Ci-fH-f1kgUs-Zg2uiAAQVSEyDSnXkOcVr4iOCgCmLGQB-ZjSjJki2hsuheTCpJAKzSnRAHyIrvp_o-Gu1aFRK9f6Oq5UTLJMcEayNFKjnlrCWitbG9d4KOOpdNR3tTY2zieSccJpSlkMXB8EItPoz2YJbQhq_vpyyLKeLb0LwWujtt5uwHeKEvVdgupLULEE9VOCojHE-1CIcL3U_s_7n9QXJAWHRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725632054</pqid></control><display><type>article</type><title>A Bayesian Approach for Data-Driven Dynamic Equation Discovery</title><source>SpringerNature Journals</source><creator>North, Joshua S. ; Wikle, Christopher K. ; Schliep, Erin M.</creator><creatorcontrib>North, Joshua S. ; Wikle, Christopher K. ; Schliep, Erin M.</creatorcontrib><description>Many real-world scientific and engineering processes are governed by complex nonlinear interactions, and differential equations are commonly used to explain the dynamics of these complex systems. While the differential equations generally capture the dynamics of the system, they impose a rigid modeling structure that assumes the dynamics of the system are known. Even when some of the dynamical relationships are known, rarely do we know the form of the governing equations. Learning these governing equations can improve our understanding of the mechanisms driving the complex systems. Here, we present a Bayesian data-driven approach to nonlinear dynamic equation discovery. The Bayesian framework can accommodate measurement noise and missing data, which are common in these systems, and accounts for model parameter uncertainty. We illustrate our method using simulated data as well as three real-world applications for which dynamic equations are used to study real-world processes.
Supplementary materials accompanying this paper appear online.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1007/s13253-022-00514-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Bayesian analysis ; Biostatistics ; Complex systems ; Differential equations ; Dynamical systems ; Health Sciences ; Mathematical models ; Mathematics and Statistics ; Medicine ; Missing data ; Monitoring/Environmental Analysis ; Noise measurement ; Nonlinear dynamics ; Parameter uncertainty ; Statistics ; Statistics for Life Sciences</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 2022-12, Vol.27 (4), p.728-747</ispartof><rights>International Biometric Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d06aa6db65ea43ea88d3d0e360aafcb7ba891152fb005f376736f4a46e310eaa3</citedby><cites>FETCH-LOGICAL-c392t-d06aa6db65ea43ea88d3d0e360aafcb7ba891152fb005f376736f4a46e310eaa3</cites><orcidid>0000-0001-7631-8021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13253-022-00514-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13253-022-00514-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>North, Joshua S.</creatorcontrib><creatorcontrib>Wikle, Christopher K.</creatorcontrib><creatorcontrib>Schliep, Erin M.</creatorcontrib><title>A Bayesian Approach for Data-Driven Dynamic Equation Discovery</title><title>Journal of agricultural, biological, and environmental statistics</title><addtitle>JABES</addtitle><description>Many real-world scientific and engineering processes are governed by complex nonlinear interactions, and differential equations are commonly used to explain the dynamics of these complex systems. While the differential equations generally capture the dynamics of the system, they impose a rigid modeling structure that assumes the dynamics of the system are known. Even when some of the dynamical relationships are known, rarely do we know the form of the governing equations. Learning these governing equations can improve our understanding of the mechanisms driving the complex systems. Here, we present a Bayesian data-driven approach to nonlinear dynamic equation discovery. The Bayesian framework can accommodate measurement noise and missing data, which are common in these systems, and accounts for model parameter uncertainty. We illustrate our method using simulated data as well as three real-world applications for which dynamic equations are used to study real-world processes.
Supplementary materials accompanying this paper appear online.</description><subject>Agriculture</subject><subject>Bayesian analysis</subject><subject>Biostatistics</subject><subject>Complex systems</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Health Sciences</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Missing data</subject><subject>Monitoring/Environmental Analysis</subject><subject>Noise measurement</subject><subject>Nonlinear dynamics</subject><subject>Parameter uncertainty</subject><subject>Statistics</subject><subject>Statistics for Life Sciences</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhoMoOKd_wKuCV15k5qNNuhthuqmDgeDHdThtk5mxNVvSDvvvjVaQ3UguEg7Pm_PAi9AlJSNKiLwJlLOMY8IYJiSjKaZHaEAzLjETY34c3yTPsKRUnqKzEFaEUC4IG6DbSXIHnQ4W6mSy3XoH5UdinE-m0ACeervXdTLtatjYMpntWmisiwMbSrfXvjtHJwbWQV_83kP0_jB7u3_Ci-fH-f1kgUs-Zg2uiAAQVSEyDSnXkOcVr4iOCgCmLGQB-ZjSjJki2hsuheTCpJAKzSnRAHyIrvp_o-Gu1aFRK9f6Oq5UTLJMcEayNFKjnlrCWitbG9d4KOOpdNR3tTY2zieSccJpSlkMXB8EItPoz2YJbQhq_vpyyLKeLb0LwWujtt5uwHeKEvVdgupLULEE9VOCojHE-1CIcL3U_s_7n9QXJAWHRQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>North, Joshua S.</creator><creator>Wikle, Christopher K.</creator><creator>Schliep, Erin M.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0001-7631-8021</orcidid></search><sort><creationdate>20221201</creationdate><title>A Bayesian Approach for Data-Driven Dynamic Equation Discovery</title><author>North, Joshua S. ; Wikle, Christopher K. ; Schliep, Erin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d06aa6db65ea43ea88d3d0e360aafcb7ba891152fb005f376736f4a46e310eaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Bayesian analysis</topic><topic>Biostatistics</topic><topic>Complex systems</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Health Sciences</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Missing data</topic><topic>Monitoring/Environmental Analysis</topic><topic>Noise measurement</topic><topic>Nonlinear dynamics</topic><topic>Parameter uncertainty</topic><topic>Statistics</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>North, Joshua S.</creatorcontrib><creatorcontrib>Wikle, Christopher K.</creatorcontrib><creatorcontrib>Schliep, Erin M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>North, Joshua S.</au><au>Wikle, Christopher K.</au><au>Schliep, Erin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Approach for Data-Driven Dynamic Equation Discovery</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><stitle>JABES</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>27</volume><issue>4</issue><spage>728</spage><epage>747</epage><pages>728-747</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>Many real-world scientific and engineering processes are governed by complex nonlinear interactions, and differential equations are commonly used to explain the dynamics of these complex systems. While the differential equations generally capture the dynamics of the system, they impose a rigid modeling structure that assumes the dynamics of the system are known. Even when some of the dynamical relationships are known, rarely do we know the form of the governing equations. Learning these governing equations can improve our understanding of the mechanisms driving the complex systems. Here, we present a Bayesian data-driven approach to nonlinear dynamic equation discovery. The Bayesian framework can accommodate measurement noise and missing data, which are common in these systems, and accounts for model parameter uncertainty. We illustrate our method using simulated data as well as three real-world applications for which dynamic equations are used to study real-world processes.
Supplementary materials accompanying this paper appear online.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s13253-022-00514-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7631-8021</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-7117 |
ispartof | Journal of agricultural, biological, and environmental statistics, 2022-12, Vol.27 (4), p.728-747 |
issn | 1085-7117 1537-2693 |
language | eng |
recordid | cdi_proquest_journals_2725632054 |
source | SpringerNature Journals |
subjects | Agriculture Bayesian analysis Biostatistics Complex systems Differential equations Dynamical systems Health Sciences Mathematical models Mathematics and Statistics Medicine Missing data Monitoring/Environmental Analysis Noise measurement Nonlinear dynamics Parameter uncertainty Statistics Statistics for Life Sciences |
title | A Bayesian Approach for Data-Driven Dynamic Equation Discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Approach%20for%20Data-Driven%20Dynamic%20Equation%20Discovery&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=North,%20Joshua%20S.&rft.date=2022-12-01&rft.volume=27&rft.issue=4&rft.spage=728&rft.epage=747&rft.pages=728-747&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1007/s13253-022-00514-1&rft_dat=%3Cgale_proqu%3EA723031412%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725632054&rft_id=info:pmid/&rft_galeid=A723031412&rfr_iscdi=true |