Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites
Ti6Al4V-equine bone (EB) nanocomposites fabricated by powder metallurgy and heat treatment are considered attractive biomaterials owing to the combined properties of Ti6Al4V and EB, which contains natural hydroxyapatite (HAp). In this study, the biocompatibility and corrosion resistance of Ti6Al4V-E...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2022-10, Vol.57 (38), p.18051-18061 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18061 |
---|---|
container_issue | 38 |
container_start_page | 18051 |
container_title | Journal of materials science |
container_volume | 57 |
creator | Jeong, Wonki Shin, Se-Eun |
description | Ti6Al4V-equine bone (EB) nanocomposites fabricated by powder metallurgy and heat treatment are considered attractive biomaterials owing to the combined properties of Ti6Al4V and EB, which contains natural hydroxyapatite (HAp). In this study, the biocompatibility and corrosion resistance of Ti6Al4V-EB composites were assessed by culture with MC3T3-E1 cells and corrosion tests in 0.9% NaCl solution at the normal body temperature. Biocompatibility test showed that enhanced MC3T3-E1 cell adhesion, spreading, and proliferation on the EB embed Ti6Al4V composites compared to those grown on pure Ti6Al4V. This finding is attributed to the rich HAp content of EB, which exerts a positive effect on MC3T3-E1 cell attachment to the Ti6Al4V-EB composite surface. Electrochemical analysis revealed that corrosion rate of composites containing 0.05 and 0.5 wt% EB is 0.00247–0.01132 mpy which is lower than that of pure Ti6Al4V which is 0.0358 mpy. This result indicated that the EB particles dispersed in the composite matrix interfere with the transfer of metal ions and could improve corrosion resistance. Given the excellent corrosion resistance and bioactivity of the Ti6Al4V-EB composites, these materials may have potential applications as biomaterials for implants featuring reduced healing periods without metal ion elution. |
doi_str_mv | 10.1007/s10853-022-07370-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2725136283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722784339</galeid><sourcerecordid>A722784339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-57b7d19d2f9de2384a5073d10711063607bb77df64c1a74820aac1fb5faecc493</originalsourceid><addsrcrecordid>eNp9kUtrAyEUhaW00PTxB7oa6KoL06vOjJNlWvoIFAp9LboRx9HEkIyJOiX59zWdQsmmCFfQ75x79SB0QWBIAPh1IFAVDAOlGDjjgDcHaEAKznBeATtEA9hd0bwkx-gkhDkAFJySAfq8sU655UpGW9uFjdtMtk2mnPcuWNdmtZ7JL-t85kw20zLi6FPVTfZmy_Ei_8B63dlWZ7VLpZXtj1mSRh3O0JGRi6DPf_dT9H5_93b7iJ-eHya34yesGKURF7zmDRk11IwaTVmVyyI9oSHACYGSlcDrmvPGlLkikucVBSkVMXVhpFYqH7FTdNn7rrxbdzpEMXedb1NLQTktCCtpxRI17KmpXGhhW-OilyqtRi-tStMbm87HnFJe5YztbK_2BImJehOnsgtBTF5f9lnasyp9W_DaiJW3S-m3goDYBST6gERKQfwEJDZJxHpRSHA71f5v7n9U3_k5kx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725136283</pqid></control><display><type>article</type><title>Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites</title><source>SpringerNature Journals</source><creator>Jeong, Wonki ; Shin, Se-Eun</creator><creatorcontrib>Jeong, Wonki ; Shin, Se-Eun</creatorcontrib><description>Ti6Al4V-equine bone (EB) nanocomposites fabricated by powder metallurgy and heat treatment are considered attractive biomaterials owing to the combined properties of Ti6Al4V and EB, which contains natural hydroxyapatite (HAp). In this study, the biocompatibility and corrosion resistance of Ti6Al4V-EB composites were assessed by culture with MC3T3-E1 cells and corrosion tests in 0.9% NaCl solution at the normal body temperature. Biocompatibility test showed that enhanced MC3T3-E1 cell adhesion, spreading, and proliferation on the EB embed Ti6Al4V composites compared to those grown on pure Ti6Al4V. This finding is attributed to the rich HAp content of EB, which exerts a positive effect on MC3T3-E1 cell attachment to the Ti6Al4V-EB composite surface. Electrochemical analysis revealed that corrosion rate of composites containing 0.05 and 0.5 wt% EB is 0.00247–0.01132 mpy which is lower than that of pure Ti6Al4V which is 0.0358 mpy. This result indicated that the EB particles dispersed in the composite matrix interfere with the transfer of metal ions and could improve corrosion resistance. Given the excellent corrosion resistance and bioactivity of the Ti6Al4V-EB composites, these materials may have potential applications as biomaterials for implants featuring reduced healing periods without metal ion elution.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-022-07370-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Biocompatibility ; Biological products ; Biomedical materials ; Body temperature ; Cell adhesion ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Corrosion and anti-corrosives ; Corrosion cell ; Corrosion rate ; Corrosion resistance ; Corrosion tests ; Crystallography and Scattering Methods ; Electrochemical analysis ; Heat treatment ; Hydroxyapatite ; Innovation in Materials Processing ; Materials Science ; Metal ions ; Metal powder products ; Metal powders ; Nanocomposites ; Particulate composites ; Polymer Sciences ; Powder metallurgy ; Protective coatings ; Solid Mechanics ; Surgical implants ; Titanium base alloys</subject><ispartof>Journal of materials science, 2022-10, Vol.57 (38), p.18051-18061</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-57b7d19d2f9de2384a5073d10711063607bb77df64c1a74820aac1fb5faecc493</citedby><cites>FETCH-LOGICAL-c322t-57b7d19d2f9de2384a5073d10711063607bb77df64c1a74820aac1fb5faecc493</cites><orcidid>0000-0003-2099-7330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-022-07370-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-022-07370-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jeong, Wonki</creatorcontrib><creatorcontrib>Shin, Se-Eun</creatorcontrib><title>Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Ti6Al4V-equine bone (EB) nanocomposites fabricated by powder metallurgy and heat treatment are considered attractive biomaterials owing to the combined properties of Ti6Al4V and EB, which contains natural hydroxyapatite (HAp). In this study, the biocompatibility and corrosion resistance of Ti6Al4V-EB composites were assessed by culture with MC3T3-E1 cells and corrosion tests in 0.9% NaCl solution at the normal body temperature. Biocompatibility test showed that enhanced MC3T3-E1 cell adhesion, spreading, and proliferation on the EB embed Ti6Al4V composites compared to those grown on pure Ti6Al4V. This finding is attributed to the rich HAp content of EB, which exerts a positive effect on MC3T3-E1 cell attachment to the Ti6Al4V-EB composite surface. Electrochemical analysis revealed that corrosion rate of composites containing 0.05 and 0.5 wt% EB is 0.00247–0.01132 mpy which is lower than that of pure Ti6Al4V which is 0.0358 mpy. This result indicated that the EB particles dispersed in the composite matrix interfere with the transfer of metal ions and could improve corrosion resistance. Given the excellent corrosion resistance and bioactivity of the Ti6Al4V-EB composites, these materials may have potential applications as biomaterials for implants featuring reduced healing periods without metal ion elution.</description><subject>Analysis</subject><subject>Biocompatibility</subject><subject>Biological products</subject><subject>Biomedical materials</subject><subject>Body temperature</subject><subject>Cell adhesion</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion cell</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrochemical analysis</subject><subject>Heat treatment</subject><subject>Hydroxyapatite</subject><subject>Innovation in Materials Processing</subject><subject>Materials Science</subject><subject>Metal ions</subject><subject>Metal powder products</subject><subject>Metal powders</subject><subject>Nanocomposites</subject><subject>Particulate composites</subject><subject>Polymer Sciences</subject><subject>Powder metallurgy</subject><subject>Protective coatings</subject><subject>Solid Mechanics</subject><subject>Surgical implants</subject><subject>Titanium base alloys</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUtrAyEUhaW00PTxB7oa6KoL06vOjJNlWvoIFAp9LboRx9HEkIyJOiX59zWdQsmmCFfQ75x79SB0QWBIAPh1IFAVDAOlGDjjgDcHaEAKznBeATtEA9hd0bwkx-gkhDkAFJySAfq8sU655UpGW9uFjdtMtk2mnPcuWNdmtZ7JL-t85kw20zLi6FPVTfZmy_Ei_8B63dlWZ7VLpZXtj1mSRh3O0JGRi6DPf_dT9H5_93b7iJ-eHya34yesGKURF7zmDRk11IwaTVmVyyI9oSHACYGSlcDrmvPGlLkikucVBSkVMXVhpFYqH7FTdNn7rrxbdzpEMXedb1NLQTktCCtpxRI17KmpXGhhW-OilyqtRi-tStMbm87HnFJe5YztbK_2BImJehOnsgtBTF5f9lnasyp9W_DaiJW3S-m3goDYBST6gERKQfwEJDZJxHpRSHA71f5v7n9U3_k5kx8</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Jeong, Wonki</creator><creator>Shin, Se-Eun</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2099-7330</orcidid></search><sort><creationdate>20221001</creationdate><title>Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites</title><author>Jeong, Wonki ; Shin, Se-Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-57b7d19d2f9de2384a5073d10711063607bb77df64c1a74820aac1fb5faecc493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Biocompatibility</topic><topic>Biological products</topic><topic>Biomedical materials</topic><topic>Body temperature</topic><topic>Cell adhesion</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion cell</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrochemical analysis</topic><topic>Heat treatment</topic><topic>Hydroxyapatite</topic><topic>Innovation in Materials Processing</topic><topic>Materials Science</topic><topic>Metal ions</topic><topic>Metal powder products</topic><topic>Metal powders</topic><topic>Nanocomposites</topic><topic>Particulate composites</topic><topic>Polymer Sciences</topic><topic>Powder metallurgy</topic><topic>Protective coatings</topic><topic>Solid Mechanics</topic><topic>Surgical implants</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Wonki</creatorcontrib><creatorcontrib>Shin, Se-Eun</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Wonki</au><au>Shin, Se-Eun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>57</volume><issue>38</issue><spage>18051</spage><epage>18061</epage><pages>18051-18061</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Ti6Al4V-equine bone (EB) nanocomposites fabricated by powder metallurgy and heat treatment are considered attractive biomaterials owing to the combined properties of Ti6Al4V and EB, which contains natural hydroxyapatite (HAp). In this study, the biocompatibility and corrosion resistance of Ti6Al4V-EB composites were assessed by culture with MC3T3-E1 cells and corrosion tests in 0.9% NaCl solution at the normal body temperature. Biocompatibility test showed that enhanced MC3T3-E1 cell adhesion, spreading, and proliferation on the EB embed Ti6Al4V composites compared to those grown on pure Ti6Al4V. This finding is attributed to the rich HAp content of EB, which exerts a positive effect on MC3T3-E1 cell attachment to the Ti6Al4V-EB composite surface. Electrochemical analysis revealed that corrosion rate of composites containing 0.05 and 0.5 wt% EB is 0.00247–0.01132 mpy which is lower than that of pure Ti6Al4V which is 0.0358 mpy. This result indicated that the EB particles dispersed in the composite matrix interfere with the transfer of metal ions and could improve corrosion resistance. Given the excellent corrosion resistance and bioactivity of the Ti6Al4V-EB composites, these materials may have potential applications as biomaterials for implants featuring reduced healing periods without metal ion elution.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-022-07370-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2099-7330</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2022-10, Vol.57 (38), p.18051-18061 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2725136283 |
source | SpringerNature Journals |
subjects | Analysis Biocompatibility Biological products Biomedical materials Body temperature Cell adhesion Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Corrosion and anti-corrosives Corrosion cell Corrosion rate Corrosion resistance Corrosion tests Crystallography and Scattering Methods Electrochemical analysis Heat treatment Hydroxyapatite Innovation in Materials Processing Materials Science Metal ions Metal powder products Metal powders Nanocomposites Particulate composites Polymer Sciences Powder metallurgy Protective coatings Solid Mechanics Surgical implants Titanium base alloys |
title | Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocompatibility%20and%20corrosion%20behavior%20of%20heat-treated%20Ti6Al4V-equine%20bone%20nanocomposites&rft.jtitle=Journal%20of%20materials%20science&rft.au=Jeong,%20Wonki&rft.date=2022-10-01&rft.volume=57&rft.issue=38&rft.spage=18051&rft.epage=18061&rft.pages=18051-18061&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-022-07370-x&rft_dat=%3Cgale_proqu%3EA722784339%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725136283&rft_id=info:pmid/&rft_galeid=A722784339&rfr_iscdi=true |