Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites

Ti6Al4V-equine bone (EB) nanocomposites fabricated by powder metallurgy and heat treatment are considered attractive biomaterials owing to the combined properties of Ti6Al4V and EB, which contains natural hydroxyapatite (HAp). In this study, the biocompatibility and corrosion resistance of Ti6Al4V-E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2022-10, Vol.57 (38), p.18051-18061
Hauptverfasser: Jeong, Wonki, Shin, Se-Eun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18061
container_issue 38
container_start_page 18051
container_title Journal of materials science
container_volume 57
creator Jeong, Wonki
Shin, Se-Eun
description Ti6Al4V-equine bone (EB) nanocomposites fabricated by powder metallurgy and heat treatment are considered attractive biomaterials owing to the combined properties of Ti6Al4V and EB, which contains natural hydroxyapatite (HAp). In this study, the biocompatibility and corrosion resistance of Ti6Al4V-EB composites were assessed by culture with MC3T3-E1 cells and corrosion tests in 0.9% NaCl solution at the normal body temperature. Biocompatibility test showed that enhanced MC3T3-E1 cell adhesion, spreading, and proliferation on the EB embed Ti6Al4V composites compared to those grown on pure Ti6Al4V. This finding is attributed to the rich HAp content of EB, which exerts a positive effect on MC3T3-E1 cell attachment to the Ti6Al4V-EB composite surface. Electrochemical analysis revealed that corrosion rate of composites containing 0.05 and 0.5 wt% EB is 0.00247–0.01132 mpy which is lower than that of pure Ti6Al4V which is 0.0358 mpy. This result indicated that the EB particles dispersed in the composite matrix interfere with the transfer of metal ions and could improve corrosion resistance. Given the excellent corrosion resistance and bioactivity of the Ti6Al4V-EB composites, these materials may have potential applications as biomaterials for implants featuring reduced healing periods without metal ion elution.
doi_str_mv 10.1007/s10853-022-07370-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2725136283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722784339</galeid><sourcerecordid>A722784339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-57b7d19d2f9de2384a5073d10711063607bb77df64c1a74820aac1fb5faecc493</originalsourceid><addsrcrecordid>eNp9kUtrAyEUhaW00PTxB7oa6KoL06vOjJNlWvoIFAp9LboRx9HEkIyJOiX59zWdQsmmCFfQ75x79SB0QWBIAPh1IFAVDAOlGDjjgDcHaEAKznBeATtEA9hd0bwkx-gkhDkAFJySAfq8sU655UpGW9uFjdtMtk2mnPcuWNdmtZ7JL-t85kw20zLi6FPVTfZmy_Ei_8B63dlWZ7VLpZXtj1mSRh3O0JGRi6DPf_dT9H5_93b7iJ-eHya34yesGKURF7zmDRk11IwaTVmVyyI9oSHACYGSlcDrmvPGlLkikucVBSkVMXVhpFYqH7FTdNn7rrxbdzpEMXedb1NLQTktCCtpxRI17KmpXGhhW-OilyqtRi-tStMbm87HnFJe5YztbK_2BImJehOnsgtBTF5f9lnasyp9W_DaiJW3S-m3goDYBST6gERKQfwEJDZJxHpRSHA71f5v7n9U3_k5kx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725136283</pqid></control><display><type>article</type><title>Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites</title><source>SpringerNature Journals</source><creator>Jeong, Wonki ; Shin, Se-Eun</creator><creatorcontrib>Jeong, Wonki ; Shin, Se-Eun</creatorcontrib><description>Ti6Al4V-equine bone (EB) nanocomposites fabricated by powder metallurgy and heat treatment are considered attractive biomaterials owing to the combined properties of Ti6Al4V and EB, which contains natural hydroxyapatite (HAp). In this study, the biocompatibility and corrosion resistance of Ti6Al4V-EB composites were assessed by culture with MC3T3-E1 cells and corrosion tests in 0.9% NaCl solution at the normal body temperature. Biocompatibility test showed that enhanced MC3T3-E1 cell adhesion, spreading, and proliferation on the EB embed Ti6Al4V composites compared to those grown on pure Ti6Al4V. This finding is attributed to the rich HAp content of EB, which exerts a positive effect on MC3T3-E1 cell attachment to the Ti6Al4V-EB composite surface. Electrochemical analysis revealed that corrosion rate of composites containing 0.05 and 0.5 wt% EB is 0.00247–0.01132 mpy which is lower than that of pure Ti6Al4V which is 0.0358 mpy. This result indicated that the EB particles dispersed in the composite matrix interfere with the transfer of metal ions and could improve corrosion resistance. Given the excellent corrosion resistance and bioactivity of the Ti6Al4V-EB composites, these materials may have potential applications as biomaterials for implants featuring reduced healing periods without metal ion elution.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-022-07370-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Biocompatibility ; Biological products ; Biomedical materials ; Body temperature ; Cell adhesion ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Corrosion and anti-corrosives ; Corrosion cell ; Corrosion rate ; Corrosion resistance ; Corrosion tests ; Crystallography and Scattering Methods ; Electrochemical analysis ; Heat treatment ; Hydroxyapatite ; Innovation in Materials Processing ; Materials Science ; Metal ions ; Metal powder products ; Metal powders ; Nanocomposites ; Particulate composites ; Polymer Sciences ; Powder metallurgy ; Protective coatings ; Solid Mechanics ; Surgical implants ; Titanium base alloys</subject><ispartof>Journal of materials science, 2022-10, Vol.57 (38), p.18051-18061</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-57b7d19d2f9de2384a5073d10711063607bb77df64c1a74820aac1fb5faecc493</citedby><cites>FETCH-LOGICAL-c322t-57b7d19d2f9de2384a5073d10711063607bb77df64c1a74820aac1fb5faecc493</cites><orcidid>0000-0003-2099-7330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-022-07370-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-022-07370-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jeong, Wonki</creatorcontrib><creatorcontrib>Shin, Se-Eun</creatorcontrib><title>Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Ti6Al4V-equine bone (EB) nanocomposites fabricated by powder metallurgy and heat treatment are considered attractive biomaterials owing to the combined properties of Ti6Al4V and EB, which contains natural hydroxyapatite (HAp). In this study, the biocompatibility and corrosion resistance of Ti6Al4V-EB composites were assessed by culture with MC3T3-E1 cells and corrosion tests in 0.9% NaCl solution at the normal body temperature. Biocompatibility test showed that enhanced MC3T3-E1 cell adhesion, spreading, and proliferation on the EB embed Ti6Al4V composites compared to those grown on pure Ti6Al4V. This finding is attributed to the rich HAp content of EB, which exerts a positive effect on MC3T3-E1 cell attachment to the Ti6Al4V-EB composite surface. Electrochemical analysis revealed that corrosion rate of composites containing 0.05 and 0.5 wt% EB is 0.00247–0.01132 mpy which is lower than that of pure Ti6Al4V which is 0.0358 mpy. This result indicated that the EB particles dispersed in the composite matrix interfere with the transfer of metal ions and could improve corrosion resistance. Given the excellent corrosion resistance and bioactivity of the Ti6Al4V-EB composites, these materials may have potential applications as biomaterials for implants featuring reduced healing periods without metal ion elution.</description><subject>Analysis</subject><subject>Biocompatibility</subject><subject>Biological products</subject><subject>Biomedical materials</subject><subject>Body temperature</subject><subject>Cell adhesion</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion cell</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrochemical analysis</subject><subject>Heat treatment</subject><subject>Hydroxyapatite</subject><subject>Innovation in Materials Processing</subject><subject>Materials Science</subject><subject>Metal ions</subject><subject>Metal powder products</subject><subject>Metal powders</subject><subject>Nanocomposites</subject><subject>Particulate composites</subject><subject>Polymer Sciences</subject><subject>Powder metallurgy</subject><subject>Protective coatings</subject><subject>Solid Mechanics</subject><subject>Surgical implants</subject><subject>Titanium base alloys</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUtrAyEUhaW00PTxB7oa6KoL06vOjJNlWvoIFAp9LboRx9HEkIyJOiX59zWdQsmmCFfQ75x79SB0QWBIAPh1IFAVDAOlGDjjgDcHaEAKznBeATtEA9hd0bwkx-gkhDkAFJySAfq8sU655UpGW9uFjdtMtk2mnPcuWNdmtZ7JL-t85kw20zLi6FPVTfZmy_Ei_8B63dlWZ7VLpZXtj1mSRh3O0JGRi6DPf_dT9H5_93b7iJ-eHya34yesGKURF7zmDRk11IwaTVmVyyI9oSHACYGSlcDrmvPGlLkikucVBSkVMXVhpFYqH7FTdNn7rrxbdzpEMXedb1NLQTktCCtpxRI17KmpXGhhW-OilyqtRi-tStMbm87HnFJe5YztbK_2BImJehOnsgtBTF5f9lnasyp9W_DaiJW3S-m3goDYBST6gERKQfwEJDZJxHpRSHA71f5v7n9U3_k5kx8</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Jeong, Wonki</creator><creator>Shin, Se-Eun</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2099-7330</orcidid></search><sort><creationdate>20221001</creationdate><title>Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites</title><author>Jeong, Wonki ; Shin, Se-Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-57b7d19d2f9de2384a5073d10711063607bb77df64c1a74820aac1fb5faecc493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Biocompatibility</topic><topic>Biological products</topic><topic>Biomedical materials</topic><topic>Body temperature</topic><topic>Cell adhesion</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion cell</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrochemical analysis</topic><topic>Heat treatment</topic><topic>Hydroxyapatite</topic><topic>Innovation in Materials Processing</topic><topic>Materials Science</topic><topic>Metal ions</topic><topic>Metal powder products</topic><topic>Metal powders</topic><topic>Nanocomposites</topic><topic>Particulate composites</topic><topic>Polymer Sciences</topic><topic>Powder metallurgy</topic><topic>Protective coatings</topic><topic>Solid Mechanics</topic><topic>Surgical implants</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Wonki</creatorcontrib><creatorcontrib>Shin, Se-Eun</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Wonki</au><au>Shin, Se-Eun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>57</volume><issue>38</issue><spage>18051</spage><epage>18061</epage><pages>18051-18061</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Ti6Al4V-equine bone (EB) nanocomposites fabricated by powder metallurgy and heat treatment are considered attractive biomaterials owing to the combined properties of Ti6Al4V and EB, which contains natural hydroxyapatite (HAp). In this study, the biocompatibility and corrosion resistance of Ti6Al4V-EB composites were assessed by culture with MC3T3-E1 cells and corrosion tests in 0.9% NaCl solution at the normal body temperature. Biocompatibility test showed that enhanced MC3T3-E1 cell adhesion, spreading, and proliferation on the EB embed Ti6Al4V composites compared to those grown on pure Ti6Al4V. This finding is attributed to the rich HAp content of EB, which exerts a positive effect on MC3T3-E1 cell attachment to the Ti6Al4V-EB composite surface. Electrochemical analysis revealed that corrosion rate of composites containing 0.05 and 0.5 wt% EB is 0.00247–0.01132 mpy which is lower than that of pure Ti6Al4V which is 0.0358 mpy. This result indicated that the EB particles dispersed in the composite matrix interfere with the transfer of metal ions and could improve corrosion resistance. Given the excellent corrosion resistance and bioactivity of the Ti6Al4V-EB composites, these materials may have potential applications as biomaterials for implants featuring reduced healing periods without metal ion elution.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-022-07370-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2099-7330</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2022-10, Vol.57 (38), p.18051-18061
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2725136283
source SpringerNature Journals
subjects Analysis
Biocompatibility
Biological products
Biomedical materials
Body temperature
Cell adhesion
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Corrosion and anti-corrosives
Corrosion cell
Corrosion rate
Corrosion resistance
Corrosion tests
Crystallography and Scattering Methods
Electrochemical analysis
Heat treatment
Hydroxyapatite
Innovation in Materials Processing
Materials Science
Metal ions
Metal powder products
Metal powders
Nanocomposites
Particulate composites
Polymer Sciences
Powder metallurgy
Protective coatings
Solid Mechanics
Surgical implants
Titanium base alloys
title Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocompatibility%20and%20corrosion%20behavior%20of%20heat-treated%20Ti6Al4V-equine%20bone%20nanocomposites&rft.jtitle=Journal%20of%20materials%20science&rft.au=Jeong,%20Wonki&rft.date=2022-10-01&rft.volume=57&rft.issue=38&rft.spage=18051&rft.epage=18061&rft.pages=18051-18061&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-022-07370-x&rft_dat=%3Cgale_proqu%3EA722784339%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725136283&rft_id=info:pmid/&rft_galeid=A722784339&rfr_iscdi=true