Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing
Multi-phase structure alloys have been widely used in superplasticity deformation due to their ability to inhibit grain growth. However, the current study on multi-phase structure alloys has mainly indicated static grain growth than dynamic grain growth. Dynamic grain growth plays an important role...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2022-10, Vol.57 (38), p.18154-18167 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18167 |
---|---|
container_issue | 38 |
container_start_page | 18154 |
container_title | Journal of materials science |
container_volume | 57 |
creator | Nguyen, Nhung Thi-Cam Asghari-Rad, Peyman Park, Hyojin Kim, Hyoung Seop |
description | Multi-phase structure alloys have been widely used in superplasticity deformation due to their ability to inhibit grain growth. However, the current study on multi-phase structure alloys has mainly indicated static grain growth than dynamic grain growth. Dynamic grain growth plays an important role in superplastic deformation because it leads to strain hardening, limiting superplastic elongation. In this research, the Al
0.5
CoCrFeMnNi high-entropy alloy (HEA) was annealed at 1473 K for 2 h to form a single-phase FCC microstructure, then subjected to high-pressure torsion (HPT) for grain refinement. This HEA achieved high-strain rate superplasticity with an impressive elongation of 1100% under a temperature of 1073 K at a strain rate of 10
–1
s
−1
. Comparing the results of the present study with a previous work published on the same HEA reveals the impact of initial annealing on the superplastic response. It is suggested that the initial B2, formed during the annealing stage before the HPT process, effectually limits the dynamic grain growth, resulting in remarkably enhanced superplasticity. This investigation introduces the new microstructural evolution to uplift superplasticity in multi-phase structures with dynamic grain growth elimination.
Graphical abstract |
doi_str_mv | 10.1007/s10853-022-07616-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2725135058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722784336</galeid><sourcerecordid>A722784336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-e73c87bb1c6545799765ce925a054a71bdcb55b47d03d4da1df5ef2e7918b6273</originalsourceid><addsrcrecordid>eNp9kctKxDAUhoMoOI6-gKuCKxfVXJqmsxSvAwOCl3VM09MxkklrkoLz9qZWETeSRULyfSeH8yN0TPAZwVicB4IrznJMaY5FScq82kEzwgXLiwqzXTTD4xMtSrKPDkJ4wxhzQckMvVyZtgUPLhplszD04HurQjTaxG1mXKayzWCjyftXFeDn7I3Tpk8CWNgkN1PWdtusHg3zVUk5B8oatz5Ee62yAY6-9zl6vrl-urzLV_e3y8uLVa4ZpTEHwXQl6prokhdcLBai5BoWlCvMCyVI3eia87oQDWZN0SjStBxaCmJBqrqkgs3RyVS39937ACHKt27wLn0pqaCcMI55laiziVorC9K4tote6bQa2BjdOWhNur8QlIqqYKxMwukfITERPuJaDSHI5ePDX5ZOrPZdCB5amQa1UX4rCZZjTHKKSaYs5FdMcuyITVIYp7oG_9v3P9Ynm6-VSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725135058</pqid></control><display><type>article</type><title>Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing</title><source>SpringerLink Journals</source><creator>Nguyen, Nhung Thi-Cam ; Asghari-Rad, Peyman ; Park, Hyojin ; Kim, Hyoung Seop</creator><creatorcontrib>Nguyen, Nhung Thi-Cam ; Asghari-Rad, Peyman ; Park, Hyojin ; Kim, Hyoung Seop</creatorcontrib><description>Multi-phase structure alloys have been widely used in superplasticity deformation due to their ability to inhibit grain growth. However, the current study on multi-phase structure alloys has mainly indicated static grain growth than dynamic grain growth. Dynamic grain growth plays an important role in superplastic deformation because it leads to strain hardening, limiting superplastic elongation. In this research, the Al
0.5
CoCrFeMnNi high-entropy alloy (HEA) was annealed at 1473 K for 2 h to form a single-phase FCC microstructure, then subjected to high-pressure torsion (HPT) for grain refinement. This HEA achieved high-strain rate superplasticity with an impressive elongation of 1100% under a temperature of 1073 K at a strain rate of 10
–1
s
−1
. Comparing the results of the present study with a previous work published on the same HEA reveals the impact of initial annealing on the superplastic response. It is suggested that the initial B2, formed during the annealing stage before the HPT process, effectually limits the dynamic grain growth, resulting in remarkably enhanced superplasticity. This investigation introduces the new microstructural evolution to uplift superplasticity in multi-phase structures with dynamic grain growth elimination.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-022-07616-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloying elements ; Alloys ; Annealing ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Elongation ; Grain growth ; Grain refinement ; High entropy alloys ; Innovation in Materials Processing ; Materials Science ; Microstructure ; Multiphase ; Polymer Sciences ; Solid Mechanics ; Solid phases ; Specialty metals industry ; Strain hardening ; Strain rate ; Superplastic deformation ; Superplasticity</subject><ispartof>Journal of materials science, 2022-10, Vol.57 (38), p.18154-18167</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-e73c87bb1c6545799765ce925a054a71bdcb55b47d03d4da1df5ef2e7918b6273</citedby><cites>FETCH-LOGICAL-c322t-e73c87bb1c6545799765ce925a054a71bdcb55b47d03d4da1df5ef2e7918b6273</cites><orcidid>0000-0002-3155-583X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-022-07616-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-022-07616-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nguyen, Nhung Thi-Cam</creatorcontrib><creatorcontrib>Asghari-Rad, Peyman</creatorcontrib><creatorcontrib>Park, Hyojin</creatorcontrib><creatorcontrib>Kim, Hyoung Seop</creatorcontrib><title>Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Multi-phase structure alloys have been widely used in superplasticity deformation due to their ability to inhibit grain growth. However, the current study on multi-phase structure alloys has mainly indicated static grain growth than dynamic grain growth. Dynamic grain growth plays an important role in superplastic deformation because it leads to strain hardening, limiting superplastic elongation. In this research, the Al
0.5
CoCrFeMnNi high-entropy alloy (HEA) was annealed at 1473 K for 2 h to form a single-phase FCC microstructure, then subjected to high-pressure torsion (HPT) for grain refinement. This HEA achieved high-strain rate superplasticity with an impressive elongation of 1100% under a temperature of 1073 K at a strain rate of 10
–1
s
−1
. Comparing the results of the present study with a previous work published on the same HEA reveals the impact of initial annealing on the superplastic response. It is suggested that the initial B2, formed during the annealing stage before the HPT process, effectually limits the dynamic grain growth, resulting in remarkably enhanced superplasticity. This investigation introduces the new microstructural evolution to uplift superplasticity in multi-phase structures with dynamic grain growth elimination.
Graphical abstract</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Annealing</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Elongation</subject><subject>Grain growth</subject><subject>Grain refinement</subject><subject>High entropy alloys</subject><subject>Innovation in Materials Processing</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Multiphase</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Solid phases</subject><subject>Specialty metals industry</subject><subject>Strain hardening</subject><subject>Strain rate</subject><subject>Superplastic deformation</subject><subject>Superplasticity</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kctKxDAUhoMoOI6-gKuCKxfVXJqmsxSvAwOCl3VM09MxkklrkoLz9qZWETeSRULyfSeH8yN0TPAZwVicB4IrznJMaY5FScq82kEzwgXLiwqzXTTD4xMtSrKPDkJ4wxhzQckMvVyZtgUPLhplszD04HurQjTaxG1mXKayzWCjyftXFeDn7I3Tpk8CWNgkN1PWdtusHg3zVUk5B8oatz5Ee62yAY6-9zl6vrl-urzLV_e3y8uLVa4ZpTEHwXQl6prokhdcLBai5BoWlCvMCyVI3eia87oQDWZN0SjStBxaCmJBqrqkgs3RyVS39937ACHKt27wLn0pqaCcMI55laiziVorC9K4tote6bQa2BjdOWhNur8QlIqqYKxMwukfITERPuJaDSHI5ePDX5ZOrPZdCB5amQa1UX4rCZZjTHKKSaYs5FdMcuyITVIYp7oG_9v3P9Ynm6-VSA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Nguyen, Nhung Thi-Cam</creator><creator>Asghari-Rad, Peyman</creator><creator>Park, Hyojin</creator><creator>Kim, Hyoung Seop</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3155-583X</orcidid></search><sort><creationdate>20221001</creationdate><title>Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing</title><author>Nguyen, Nhung Thi-Cam ; Asghari-Rad, Peyman ; Park, Hyojin ; Kim, Hyoung Seop</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-e73c87bb1c6545799765ce925a054a71bdcb55b47d03d4da1df5ef2e7918b6273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Annealing</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Elongation</topic><topic>Grain growth</topic><topic>Grain refinement</topic><topic>High entropy alloys</topic><topic>Innovation in Materials Processing</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Multiphase</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Solid phases</topic><topic>Specialty metals industry</topic><topic>Strain hardening</topic><topic>Strain rate</topic><topic>Superplastic deformation</topic><topic>Superplasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Nhung Thi-Cam</creatorcontrib><creatorcontrib>Asghari-Rad, Peyman</creatorcontrib><creatorcontrib>Park, Hyojin</creatorcontrib><creatorcontrib>Kim, Hyoung Seop</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Nhung Thi-Cam</au><au>Asghari-Rad, Peyman</au><au>Park, Hyojin</au><au>Kim, Hyoung Seop</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>57</volume><issue>38</issue><spage>18154</spage><epage>18167</epage><pages>18154-18167</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Multi-phase structure alloys have been widely used in superplasticity deformation due to their ability to inhibit grain growth. However, the current study on multi-phase structure alloys has mainly indicated static grain growth than dynamic grain growth. Dynamic grain growth plays an important role in superplastic deformation because it leads to strain hardening, limiting superplastic elongation. In this research, the Al
0.5
CoCrFeMnNi high-entropy alloy (HEA) was annealed at 1473 K for 2 h to form a single-phase FCC microstructure, then subjected to high-pressure torsion (HPT) for grain refinement. This HEA achieved high-strain rate superplasticity with an impressive elongation of 1100% under a temperature of 1073 K at a strain rate of 10
–1
s
−1
. Comparing the results of the present study with a previous work published on the same HEA reveals the impact of initial annealing on the superplastic response. It is suggested that the initial B2, formed during the annealing stage before the HPT process, effectually limits the dynamic grain growth, resulting in remarkably enhanced superplasticity. This investigation introduces the new microstructural evolution to uplift superplasticity in multi-phase structures with dynamic grain growth elimination.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-022-07616-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3155-583X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2022-10, Vol.57 (38), p.18154-18167 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2725135058 |
source | SpringerLink Journals |
subjects | Alloying elements Alloys Annealing Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Elongation Grain growth Grain refinement High entropy alloys Innovation in Materials Processing Materials Science Microstructure Multiphase Polymer Sciences Solid Mechanics Solid phases Specialty metals industry Strain hardening Strain rate Superplastic deformation Superplasticity |
title | Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20superplasticity%20in%20a%20multi-phase%20multi-principal%20element%20alloy%20by%20initial%20annealing&rft.jtitle=Journal%20of%20materials%20science&rft.au=Nguyen,%20Nhung%20Thi-Cam&rft.date=2022-10-01&rft.volume=57&rft.issue=38&rft.spage=18154&rft.epage=18167&rft.pages=18154-18167&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-022-07616-8&rft_dat=%3Cgale_proqu%3EA722784336%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725135058&rft_id=info:pmid/&rft_galeid=A722784336&rfr_iscdi=true |