Causal bias in measures of inequality of opportunity

In recent decades, economists have developed methods for measuring the country-wide level of inequality of opportunity. The most popular method, called the ex-ante method, uses data on the distribution of outcomes stratified by groups of individuals with the same circumstances, in order to estimate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Synthese (Dordrecht) 2022-10, Vol.200 (6), p.429, Article 429
1. Verfasser: Ackermans, Lennart B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 429
container_title Synthese (Dordrecht)
container_volume 200
creator Ackermans, Lennart B.
description In recent decades, economists have developed methods for measuring the country-wide level of inequality of opportunity. The most popular method, called the ex-ante method, uses data on the distribution of outcomes stratified by groups of individuals with the same circumstances, in order to estimate the part of outcome inequality that is due to these circumstances. I argue that these methods are potentially biased, both upwards and downwards, and that the unknown size of this bias could be large. To argue that the methods are biased, I show that they ought to measure causal or counterfactual quantities, while the methods are only capable of identifying correlational information. To argue that the bias is potentially large, I illustrate how the causal complexity of the real world leads to numerous non-causal correlations between circumstances and outcomes and respond to objections claiming that such correlations are nonetheless indicators of unfair disadvantage, that is, inequality of opportunity.
doi_str_mv 10.1007/s11229-022-03899-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2725132049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725132049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-136cf7376cf542f38636c16cfef5529e391a389ef28ba06e06cfe7b087d498b93</originalsourceid><addsrcrecordid>eNp9UD1PxDAMjRBIHAd_gKkSc8BO0qYZ0Ykv6SQWmKO0JKinXtNLmuH-PSlFgonF9rPfs61HyDXCLQLIu4jImKLAGAVeK0XxhKywlJyCqsTpn_qcXMS4A0CsBKyI2JgUTV80nYlFNxR7a2IKNhbeZWgPyfTddJyRH0cfpjRkeEnOnOmjvfrJa_L--PC2eabb16eXzf2WthzFRJFXrZNc5lgK5nhd5QZmZF1ZMmW5QpOftY7VjYHKwjySDdTyQ6i6UXxNbpa9Y_CHZOOkdz6FIZ_UTLISOQMxs9jCaoOPMVinx9DtTThqBD27oxd3dHZHf7ujMYv4IoqZPHza8Lv6H9UX8oFmqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725132049</pqid></control><display><type>article</type><title>Causal bias in measures of inequality of opportunity</title><source>SpringerLink Journals</source><creator>Ackermans, Lennart B.</creator><creatorcontrib>Ackermans, Lennart B.</creatorcontrib><description>In recent decades, economists have developed methods for measuring the country-wide level of inequality of opportunity. The most popular method, called the ex-ante method, uses data on the distribution of outcomes stratified by groups of individuals with the same circumstances, in order to estimate the part of outcome inequality that is due to these circumstances. I argue that these methods are potentially biased, both upwards and downwards, and that the unknown size of this bias could be large. To argue that the methods are biased, I show that they ought to measure causal or counterfactual quantities, while the methods are only capable of identifying correlational information. To argue that the bias is potentially large, I illustrate how the causal complexity of the real world leads to numerous non-causal correlations between circumstances and outcomes and respond to objections claiming that such correlations are nonetheless indicators of unfair disadvantage, that is, inequality of opportunity.</description><identifier>ISSN: 1573-0964</identifier><identifier>ISSN: 0039-7857</identifier><identifier>EISSN: 1573-0964</identifier><identifier>DOI: 10.1007/s11229-022-03899-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bias ; Causality ; Education ; Epistemology ; Inequality ; Logic ; Metaphysics ; Methods ; Original Research ; Philosophy ; Philosophy of Language ; Philosophy of Science</subject><ispartof>Synthese (Dordrecht), 2022-10, Vol.200 (6), p.429, Article 429</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-136cf7376cf542f38636c16cfef5529e391a389ef28ba06e06cfe7b087d498b93</cites><orcidid>0000-0003-0071-2270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11229-022-03899-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11229-022-03899-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ackermans, Lennart B.</creatorcontrib><title>Causal bias in measures of inequality of opportunity</title><title>Synthese (Dordrecht)</title><addtitle>Synthese</addtitle><description>In recent decades, economists have developed methods for measuring the country-wide level of inequality of opportunity. The most popular method, called the ex-ante method, uses data on the distribution of outcomes stratified by groups of individuals with the same circumstances, in order to estimate the part of outcome inequality that is due to these circumstances. I argue that these methods are potentially biased, both upwards and downwards, and that the unknown size of this bias could be large. To argue that the methods are biased, I show that they ought to measure causal or counterfactual quantities, while the methods are only capable of identifying correlational information. To argue that the bias is potentially large, I illustrate how the causal complexity of the real world leads to numerous non-causal correlations between circumstances and outcomes and respond to objections claiming that such correlations are nonetheless indicators of unfair disadvantage, that is, inequality of opportunity.</description><subject>Bias</subject><subject>Causality</subject><subject>Education</subject><subject>Epistemology</subject><subject>Inequality</subject><subject>Logic</subject><subject>Metaphysics</subject><subject>Methods</subject><subject>Original Research</subject><subject>Philosophy</subject><subject>Philosophy of Language</subject><subject>Philosophy of Science</subject><issn>1573-0964</issn><issn>0039-7857</issn><issn>1573-0964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>AVQMV</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9UD1PxDAMjRBIHAd_gKkSc8BO0qYZ0Ykv6SQWmKO0JKinXtNLmuH-PSlFgonF9rPfs61HyDXCLQLIu4jImKLAGAVeK0XxhKywlJyCqsTpn_qcXMS4A0CsBKyI2JgUTV80nYlFNxR7a2IKNhbeZWgPyfTddJyRH0cfpjRkeEnOnOmjvfrJa_L--PC2eabb16eXzf2WthzFRJFXrZNc5lgK5nhd5QZmZF1ZMmW5QpOftY7VjYHKwjySDdTyQ6i6UXxNbpa9Y_CHZOOkdz6FIZ_UTLISOQMxs9jCaoOPMVinx9DtTThqBD27oxd3dHZHf7ujMYv4IoqZPHza8Lv6H9UX8oFmqQ</recordid><startdate>20221016</startdate><enddate>20221016</enddate><creator>Ackermans, Lennart B.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0071-2270</orcidid></search><sort><creationdate>20221016</creationdate><title>Causal bias in measures of inequality of opportunity</title><author>Ackermans, Lennart B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-136cf7376cf542f38636c16cfef5529e391a389ef28ba06e06cfe7b087d498b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bias</topic><topic>Causality</topic><topic>Education</topic><topic>Epistemology</topic><topic>Inequality</topic><topic>Logic</topic><topic>Metaphysics</topic><topic>Methods</topic><topic>Original Research</topic><topic>Philosophy</topic><topic>Philosophy of Language</topic><topic>Philosophy of Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ackermans, Lennart B.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences &amp; Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Art, Design &amp; Architecture Collection</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Arts &amp; Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Synthese (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ackermans, Lennart B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causal bias in measures of inequality of opportunity</atitle><jtitle>Synthese (Dordrecht)</jtitle><stitle>Synthese</stitle><date>2022-10-16</date><risdate>2022</risdate><volume>200</volume><issue>6</issue><spage>429</spage><pages>429-</pages><artnum>429</artnum><issn>1573-0964</issn><issn>0039-7857</issn><eissn>1573-0964</eissn><abstract>In recent decades, economists have developed methods for measuring the country-wide level of inequality of opportunity. The most popular method, called the ex-ante method, uses data on the distribution of outcomes stratified by groups of individuals with the same circumstances, in order to estimate the part of outcome inequality that is due to these circumstances. I argue that these methods are potentially biased, both upwards and downwards, and that the unknown size of this bias could be large. To argue that the methods are biased, I show that they ought to measure causal or counterfactual quantities, while the methods are only capable of identifying correlational information. To argue that the bias is potentially large, I illustrate how the causal complexity of the real world leads to numerous non-causal correlations between circumstances and outcomes and respond to objections claiming that such correlations are nonetheless indicators of unfair disadvantage, that is, inequality of opportunity.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11229-022-03899-1</doi><orcidid>https://orcid.org/0000-0003-0071-2270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1573-0964
ispartof Synthese (Dordrecht), 2022-10, Vol.200 (6), p.429, Article 429
issn 1573-0964
0039-7857
1573-0964
language eng
recordid cdi_proquest_journals_2725132049
source SpringerLink Journals
subjects Bias
Causality
Education
Epistemology
Inequality
Logic
Metaphysics
Methods
Original Research
Philosophy
Philosophy of Language
Philosophy of Science
title Causal bias in measures of inequality of opportunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causal%20bias%20in%20measures%20of%20inequality%20of%20opportunity&rft.jtitle=Synthese%20(Dordrecht)&rft.au=Ackermans,%20Lennart%20B.&rft.date=2022-10-16&rft.volume=200&rft.issue=6&rft.spage=429&rft.pages=429-&rft.artnum=429&rft.issn=1573-0964&rft.eissn=1573-0964&rft_id=info:doi/10.1007/s11229-022-03899-1&rft_dat=%3Cproquest_cross%3E2725132049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725132049&rft_id=info:pmid/&rfr_iscdi=true