U-Model-Based Adaptive Sliding Mode Control Using a Deep Deterministic Policy Gradient
This paper presents a U-model-based adaptive sliding mode control (SMC) using a deep deterministic policy gradient (DDPG) for uncertain nonlinear systems. The configuration of the proposed methodology consisted of a U-model framework and an SMC with a variable boundary layer. The U-model framework f...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022-10, Vol.2022, p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2022 |
creator | Lei, Changyi Zhu, Quanmin |
description | This paper presents a U-model-based adaptive sliding mode control (SMC) using a deep deterministic policy gradient (DDPG) for uncertain nonlinear systems. The configuration of the proposed methodology consisted of a U-model framework and an SMC with a variable boundary layer. The U-model framework forms the outer feedback loop that adjusts the overall performance of the nonlinear system, while SMC serves as a robust dynamic inverter that cancels the nonlinearity of the original plant. Besides, to alleviate the chattering problem while maintaining the intrinsic advantages of SMC, a DDPG network is designed to adaptively tune the boundary and switching gain. From the control perspective, this controller combines the interpretability of the U-model and the robustness of the SMC. From the deep reinforcement learning (DRL) point of view, the DDPG calculates nearly optimal parameters for SMC based on current states and maximizes its favourable features while minimizing the unfavourable ones. The simulation results of the single-pendulum system are compared with those of a U-model-based SMC optimized by the particle swarm optimization (PSO) algorithm. The comparison, as well as model visualization, demonstrates the superiority of the proposed methodology. |
doi_str_mv | 10.1155/2022/8980664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2725126918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725126918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8f8f9578fa5e9bc51400bb84997e40979dbce103ba9c92f1cdbafcd2781e97913</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmNw4wdE4ghlcdo0yXEMGEhDIMEQtypNUsjUNSXpQPv3tNrOXGzL75Of9RA6B3INwNiEEkonQgqS59kBGgHL04RBxg_7mdAsAZp-HKOTGFeEUGAgRuh9mTx5Y-vkRkVr8NSotnM_Fr_WzrjmEw8invmmC77GyzisFL61tu1LZ8PaNS52TuMXXzu9xfOgjLNNd4qOKlVHe7bvY7S8v3ubPSSL5_njbLpIdJryLhGVqCTjolLMylL3vxJSliKTktuMSC5NqS2QtFRSS1qBNqWqtKFcgO1VSMfoYne3Df57Y2NXrPwmNL1lQTllQHMJoqeudpQOPsZgq6INbq3CtgBSDMkVQ3LFPrkev9zhX64x6tf9T_8B5k5ssg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725126918</pqid></control><display><type>article</type><title>U-Model-Based Adaptive Sliding Mode Control Using a Deep Deterministic Policy Gradient</title><source>Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lei, Changyi ; Zhu, Quanmin</creator><contributor>Khan, Abdul Qadeer ; Abdul Qadeer Khan</contributor><creatorcontrib>Lei, Changyi ; Zhu, Quanmin ; Khan, Abdul Qadeer ; Abdul Qadeer Khan</creatorcontrib><description>This paper presents a U-model-based adaptive sliding mode control (SMC) using a deep deterministic policy gradient (DDPG) for uncertain nonlinear systems. The configuration of the proposed methodology consisted of a U-model framework and an SMC with a variable boundary layer. The U-model framework forms the outer feedback loop that adjusts the overall performance of the nonlinear system, while SMC serves as a robust dynamic inverter that cancels the nonlinearity of the original plant. Besides, to alleviate the chattering problem while maintaining the intrinsic advantages of SMC, a DDPG network is designed to adaptively tune the boundary and switching gain. From the control perspective, this controller combines the interpretability of the U-model and the robustness of the SMC. From the deep reinforcement learning (DRL) point of view, the DDPG calculates nearly optimal parameters for SMC based on current states and maximizes its favourable features while minimizing the unfavourable ones. The simulation results of the single-pendulum system are compared with those of a U-model-based SMC optimized by the particle swarm optimization (PSO) algorithm. The comparison, as well as model visualization, demonstrates the superiority of the proposed methodology.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/8980664</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Adaptive control ; Algorithms ; Boundary layers ; Control theory ; Controllers ; Feedback loops ; Machine learning ; Methods ; Neural networks ; Nonlinear systems ; Nonlinearity ; Particle swarm optimization ; Simulation ; Sliding mode control ; System theory ; Variables</subject><ispartof>Mathematical problems in engineering, 2022-10, Vol.2022, p.1-14</ispartof><rights>Copyright © 2022 Changyi Lei and Quanmin Zhu.</rights><rights>Copyright © 2022 Changyi Lei and Quanmin Zhu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8f8f9578fa5e9bc51400bb84997e40979dbce103ba9c92f1cdbafcd2781e97913</citedby><cites>FETCH-LOGICAL-c337t-8f8f9578fa5e9bc51400bb84997e40979dbce103ba9c92f1cdbafcd2781e97913</cites><orcidid>0000-0001-8173-1179 ; 0000-0002-9743-693X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Khan, Abdul Qadeer</contributor><contributor>Abdul Qadeer Khan</contributor><creatorcontrib>Lei, Changyi</creatorcontrib><creatorcontrib>Zhu, Quanmin</creatorcontrib><title>U-Model-Based Adaptive Sliding Mode Control Using a Deep Deterministic Policy Gradient</title><title>Mathematical problems in engineering</title><description>This paper presents a U-model-based adaptive sliding mode control (SMC) using a deep deterministic policy gradient (DDPG) for uncertain nonlinear systems. The configuration of the proposed methodology consisted of a U-model framework and an SMC with a variable boundary layer. The U-model framework forms the outer feedback loop that adjusts the overall performance of the nonlinear system, while SMC serves as a robust dynamic inverter that cancels the nonlinearity of the original plant. Besides, to alleviate the chattering problem while maintaining the intrinsic advantages of SMC, a DDPG network is designed to adaptively tune the boundary and switching gain. From the control perspective, this controller combines the interpretability of the U-model and the robustness of the SMC. From the deep reinforcement learning (DRL) point of view, the DDPG calculates nearly optimal parameters for SMC based on current states and maximizes its favourable features while minimizing the unfavourable ones. The simulation results of the single-pendulum system are compared with those of a U-model-based SMC optimized by the particle swarm optimization (PSO) algorithm. The comparison, as well as model visualization, demonstrates the superiority of the proposed methodology.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Boundary layers</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Feedback loops</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Particle swarm optimization</subject><subject>Simulation</subject><subject>Sliding mode control</subject><subject>System theory</subject><subject>Variables</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEFPwzAMhSMEEmNw4wdE4ghlcdo0yXEMGEhDIMEQtypNUsjUNSXpQPv3tNrOXGzL75Of9RA6B3INwNiEEkonQgqS59kBGgHL04RBxg_7mdAsAZp-HKOTGFeEUGAgRuh9mTx5Y-vkRkVr8NSotnM_Fr_WzrjmEw8invmmC77GyzisFL61tu1LZ8PaNS52TuMXXzu9xfOgjLNNd4qOKlVHe7bvY7S8v3ubPSSL5_njbLpIdJryLhGVqCTjolLMylL3vxJSliKTktuMSC5NqS2QtFRSS1qBNqWqtKFcgO1VSMfoYne3Df57Y2NXrPwmNL1lQTllQHMJoqeudpQOPsZgq6INbq3CtgBSDMkVQ3LFPrkev9zhX64x6tf9T_8B5k5ssg</recordid><startdate>20221007</startdate><enddate>20221007</enddate><creator>Lei, Changyi</creator><creator>Zhu, Quanmin</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8173-1179</orcidid><orcidid>https://orcid.org/0000-0002-9743-693X</orcidid></search><sort><creationdate>20221007</creationdate><title>U-Model-Based Adaptive Sliding Mode Control Using a Deep Deterministic Policy Gradient</title><author>Lei, Changyi ; Zhu, Quanmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8f8f9578fa5e9bc51400bb84997e40979dbce103ba9c92f1cdbafcd2781e97913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Boundary layers</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Feedback loops</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Particle swarm optimization</topic><topic>Simulation</topic><topic>Sliding mode control</topic><topic>System theory</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Changyi</creatorcontrib><creatorcontrib>Zhu, Quanmin</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Changyi</au><au>Zhu, Quanmin</au><au>Khan, Abdul Qadeer</au><au>Abdul Qadeer Khan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>U-Model-Based Adaptive Sliding Mode Control Using a Deep Deterministic Policy Gradient</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-10-07</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This paper presents a U-model-based adaptive sliding mode control (SMC) using a deep deterministic policy gradient (DDPG) for uncertain nonlinear systems. The configuration of the proposed methodology consisted of a U-model framework and an SMC with a variable boundary layer. The U-model framework forms the outer feedback loop that adjusts the overall performance of the nonlinear system, while SMC serves as a robust dynamic inverter that cancels the nonlinearity of the original plant. Besides, to alleviate the chattering problem while maintaining the intrinsic advantages of SMC, a DDPG network is designed to adaptively tune the boundary and switching gain. From the control perspective, this controller combines the interpretability of the U-model and the robustness of the SMC. From the deep reinforcement learning (DRL) point of view, the DDPG calculates nearly optimal parameters for SMC based on current states and maximizes its favourable features while minimizing the unfavourable ones. The simulation results of the single-pendulum system are compared with those of a U-model-based SMC optimized by the particle swarm optimization (PSO) algorithm. The comparison, as well as model visualization, demonstrates the superiority of the proposed methodology.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/8980664</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8173-1179</orcidid><orcidid>https://orcid.org/0000-0002-9743-693X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2022-10, Vol.2022, p.1-14 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2725126918 |
source | Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adaptive control Algorithms Boundary layers Control theory Controllers Feedback loops Machine learning Methods Neural networks Nonlinear systems Nonlinearity Particle swarm optimization Simulation Sliding mode control System theory Variables |
title | U-Model-Based Adaptive Sliding Mode Control Using a Deep Deterministic Policy Gradient |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=U-Model-Based%20Adaptive%20Sliding%20Mode%20Control%20Using%20a%20Deep%20Deterministic%20Policy%20Gradient&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Lei,%20Changyi&rft.date=2022-10-07&rft.volume=2022&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/8980664&rft_dat=%3Cproquest_cross%3E2725126918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725126918&rft_id=info:pmid/&rfr_iscdi=true |