High Dimensional Normality of Noisy Eigenvectors
We study joint eigenvector distributions for large symmetric matrices in the presence of weak noise. Our main result asserts that every submatrix in the orthogonal matrix of eigenvectors converges to a multidimensional Gaussian distribution. The proof involves analyzing the stochastic eigenstate equ...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2022-11, Vol.395 (3), p.1007-1096 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1096 |
---|---|
container_issue | 3 |
container_start_page | 1007 |
container_title | Communications in mathematical physics |
container_volume | 395 |
creator | Marcinek, Jake Yau, Horng-Tzer |
description | We study joint eigenvector distributions for large symmetric matrices in the presence of weak noise. Our main result asserts that every submatrix in the orthogonal matrix of eigenvectors converges to a multidimensional Gaussian distribution. The proof involves analyzing the
stochastic eigenstate equation (SEE)
(Bourgade and Yau in Comm Math Phys, 2013) which describes the Lie group valued flow of eigenvectors induced by matrix valued Brownian motion. We consider the associated
colored eigenvector moment flow
defining an SDE on a particle configuration space. This flow extends the
eigenvector moment flow
first introduced in Bourgade and Yau (Comm Math Phys, 2013) to the multicolor setting. However, it is no longer driven by an underlying Markov process on configuration space due to the lack of positivity in the semigroup kernel. Nevertheless, we prove the dynamics admit sufficient averaged decay and contractive properties. This allows us to establish optimal time of relaxation to equilibrium for the colored eigenvector moment flow and prove joint asymptotic normality for eigenvectors. Applications in random matrix theory include the explicit computations of joint eigenvector distributions for general Wigner type matrices and sparse graph models when corresponding eigenvalues lie in the bulk of the spectrum, as well as joint eigenvector distributions for Lévy matrices when the eigenvectors correspond to small energy levels. |
doi_str_mv | 10.1007/s00220-022-04468-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2725048063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725048063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-7fc9cb298a7b39e69149624fc3d8f310682da4df9addfe615bd5d2b4cf047ed03</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNo5nJUmpthaIbXYdMHjWlndRkaum_NzqCOzfncuA7h8tB6JrALQGo7zIApYCLYOBcNPhwgkaEs2IlEadoBEAAM0HEObrIeQ0AkgoxQrAIq_fqIWxdl0Ps9KZ6jmmrN6E_VtEXE_KxmoWV6z6d6WPKl-jM6012V793jN4eZ6_TBV6-zJ-m90tsKJc9rr2RpqWy0XXLpBOScCko94bZxjMCoqFWc-ulttY7QSatnVjacuOB184CG6OboXeX4sfe5V6t4z6VB7OiNZ0Ab0CwQtGBMinmnJxXuxS2Oh0VAfW9jBqWUUXUzzLqUEJsCOUCdyuX_qr_SX0Bng1mXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725048063</pqid></control><display><type>article</type><title>High Dimensional Normality of Noisy Eigenvectors</title><source>SpringerLink Journals</source><creator>Marcinek, Jake ; Yau, Horng-Tzer</creator><creatorcontrib>Marcinek, Jake ; Yau, Horng-Tzer</creatorcontrib><description>We study joint eigenvector distributions for large symmetric matrices in the presence of weak noise. Our main result asserts that every submatrix in the orthogonal matrix of eigenvectors converges to a multidimensional Gaussian distribution. The proof involves analyzing the
stochastic eigenstate equation (SEE)
(Bourgade and Yau in Comm Math Phys, 2013) which describes the Lie group valued flow of eigenvectors induced by matrix valued Brownian motion. We consider the associated
colored eigenvector moment flow
defining an SDE on a particle configuration space. This flow extends the
eigenvector moment flow
first introduced in Bourgade and Yau (Comm Math Phys, 2013) to the multicolor setting. However, it is no longer driven by an underlying Markov process on configuration space due to the lack of positivity in the semigroup kernel. Nevertheless, we prove the dynamics admit sufficient averaged decay and contractive properties. This allows us to establish optimal time of relaxation to equilibrium for the colored eigenvector moment flow and prove joint asymptotic normality for eigenvectors. Applications in random matrix theory include the explicit computations of joint eigenvector distributions for general Wigner type matrices and sparse graph models when corresponding eigenvalues lie in the bulk of the spectrum, as well as joint eigenvector distributions for Lévy matrices when the eigenvectors correspond to small energy levels.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-022-04468-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Brownian motion ; Classical and Quantum Gravitation ; Complex Systems ; Configurations ; Eigenvalues ; Eigenvectors ; Energy levels ; Lie groups ; Markov processes ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Physics ; Matrix theory ; Normal distribution ; Normality ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Semigroups ; Theoretical</subject><ispartof>Communications in mathematical physics, 2022-11, Vol.395 (3), p.1007-1096</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-7fc9cb298a7b39e69149624fc3d8f310682da4df9addfe615bd5d2b4cf047ed03</citedby><cites>FETCH-LOGICAL-c249t-7fc9cb298a7b39e69149624fc3d8f310682da4df9addfe615bd5d2b4cf047ed03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-022-04468-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-022-04468-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Marcinek, Jake</creatorcontrib><creatorcontrib>Yau, Horng-Tzer</creatorcontrib><title>High Dimensional Normality of Noisy Eigenvectors</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We study joint eigenvector distributions for large symmetric matrices in the presence of weak noise. Our main result asserts that every submatrix in the orthogonal matrix of eigenvectors converges to a multidimensional Gaussian distribution. The proof involves analyzing the
stochastic eigenstate equation (SEE)
(Bourgade and Yau in Comm Math Phys, 2013) which describes the Lie group valued flow of eigenvectors induced by matrix valued Brownian motion. We consider the associated
colored eigenvector moment flow
defining an SDE on a particle configuration space. This flow extends the
eigenvector moment flow
first introduced in Bourgade and Yau (Comm Math Phys, 2013) to the multicolor setting. However, it is no longer driven by an underlying Markov process on configuration space due to the lack of positivity in the semigroup kernel. Nevertheless, we prove the dynamics admit sufficient averaged decay and contractive properties. This allows us to establish optimal time of relaxation to equilibrium for the colored eigenvector moment flow and prove joint asymptotic normality for eigenvectors. Applications in random matrix theory include the explicit computations of joint eigenvector distributions for general Wigner type matrices and sparse graph models when corresponding eigenvalues lie in the bulk of the spectrum, as well as joint eigenvector distributions for Lévy matrices when the eigenvectors correspond to small energy levels.</description><subject>Brownian motion</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Configurations</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Energy levels</subject><subject>Lie groups</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Matrix theory</subject><subject>Normal distribution</subject><subject>Normality</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Semigroups</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNo5nJUmpthaIbXYdMHjWlndRkaum_NzqCOzfncuA7h8tB6JrALQGo7zIApYCLYOBcNPhwgkaEs2IlEadoBEAAM0HEObrIeQ0AkgoxQrAIq_fqIWxdl0Ps9KZ6jmmrN6E_VtEXE_KxmoWV6z6d6WPKl-jM6012V793jN4eZ6_TBV6-zJ-m90tsKJc9rr2RpqWy0XXLpBOScCko94bZxjMCoqFWc-ulttY7QSatnVjacuOB184CG6OboXeX4sfe5V6t4z6VB7OiNZ0Ab0CwQtGBMinmnJxXuxS2Oh0VAfW9jBqWUUXUzzLqUEJsCOUCdyuX_qr_SX0Bng1mXQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Marcinek, Jake</creator><creator>Yau, Horng-Tzer</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>High Dimensional Normality of Noisy Eigenvectors</title><author>Marcinek, Jake ; Yau, Horng-Tzer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-7fc9cb298a7b39e69149624fc3d8f310682da4df9addfe615bd5d2b4cf047ed03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brownian motion</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Configurations</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Energy levels</topic><topic>Lie groups</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Matrix theory</topic><topic>Normal distribution</topic><topic>Normality</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Semigroups</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcinek, Jake</creatorcontrib><creatorcontrib>Yau, Horng-Tzer</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcinek, Jake</au><au>Yau, Horng-Tzer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Dimensional Normality of Noisy Eigenvectors</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>395</volume><issue>3</issue><spage>1007</spage><epage>1096</epage><pages>1007-1096</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We study joint eigenvector distributions for large symmetric matrices in the presence of weak noise. Our main result asserts that every submatrix in the orthogonal matrix of eigenvectors converges to a multidimensional Gaussian distribution. The proof involves analyzing the
stochastic eigenstate equation (SEE)
(Bourgade and Yau in Comm Math Phys, 2013) which describes the Lie group valued flow of eigenvectors induced by matrix valued Brownian motion. We consider the associated
colored eigenvector moment flow
defining an SDE on a particle configuration space. This flow extends the
eigenvector moment flow
first introduced in Bourgade and Yau (Comm Math Phys, 2013) to the multicolor setting. However, it is no longer driven by an underlying Markov process on configuration space due to the lack of positivity in the semigroup kernel. Nevertheless, we prove the dynamics admit sufficient averaged decay and contractive properties. This allows us to establish optimal time of relaxation to equilibrium for the colored eigenvector moment flow and prove joint asymptotic normality for eigenvectors. Applications in random matrix theory include the explicit computations of joint eigenvector distributions for general Wigner type matrices and sparse graph models when corresponding eigenvalues lie in the bulk of the spectrum, as well as joint eigenvector distributions for Lévy matrices when the eigenvectors correspond to small energy levels.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-022-04468-w</doi><tpages>90</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2022-11, Vol.395 (3), p.1007-1096 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2725048063 |
source | SpringerLink Journals |
subjects | Brownian motion Classical and Quantum Gravitation Complex Systems Configurations Eigenvalues Eigenvectors Energy levels Lie groups Markov processes Mathematical analysis Mathematical and Computational Physics Mathematical Physics Matrix theory Normal distribution Normality Physics Physics and Astronomy Quantum Physics Relativity Theory Semigroups Theoretical |
title | High Dimensional Normality of Noisy Eigenvectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Dimensional%20Normality%20of%20Noisy%20Eigenvectors&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Marcinek,%20Jake&rft.date=2022-11-01&rft.volume=395&rft.issue=3&rft.spage=1007&rft.epage=1096&rft.pages=1007-1096&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-022-04468-w&rft_dat=%3Cproquest_cross%3E2725048063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725048063&rft_id=info:pmid/&rfr_iscdi=true |