Weather observation and forecasting using radiosonde
According to business today report, India recorded around 32 extreme weather events in the recent years [3]. Based on the analysis of this current paper, it is observed that all of the radiosonde instruments have small errors and can be prepared appropriate for climate studies and analysis if the su...
Gespeichert in:
Veröffentlicht in: | Telkomnika 2022-12, Vol.20 (6), p.1376-1383 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1383 |
---|---|
container_issue | 6 |
container_start_page | 1376 |
container_title | Telkomnika |
container_volume | 20 |
creator | Joseph, Jeyaraj Jency Meenal, Rajasekaran Josh, Francis Thomas Michael, Prawin Angel Krishnamoorthy, Vinoth Kumar Chandran, Giriprasad Veerabathran, Selve |
description | According to business today report, India recorded around 32 extreme weather events in the recent years [3]. Based on the analysis of this current paper, it is observed that all of the radiosonde instruments have small errors and can be prepared appropriate for climate studies and analysis if the suitable temperature correction models are used to correct the data [14]-[16]. [...]the data obtained by radiosondes is not only a chief input to numerical weather prediction, but also used for the model validation, research investigations on climate studies. [...]there is a need for emerging techniques such as artificial intelligence, machine learning, and deep learning methods in weather forecasting and climate research. [...]this work plays a major role in determining the agricultural pattern also. [...]by knowing the wind speed and its flow of direction, the implementation of renewable energy resources like the wind mills can be successfully done at the right areas. |
doi_str_mv | 10.12928/telkomnika.v20i6.24247 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2724913447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724913447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-441a9397c2fecc90ed54f8457626198243c6d707f7ea14a099f49eff96be4ffd3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWGp_gwuetyaT6WbnKMUvKHhRPIY0O9Htx6Ym24L_3rUVfGHeuTzMwCPEtZJTBQT1bc-bddx27dpNDyDbagoIaM7ECLSEkoD0uRipinQ5jLwUk5xXcoiRMKN6JPCdXf_JqYjLzOng-jZ2heuaIsTE3uW-7T6Kff7t5Jo25tg1fCUugttknvztsXh7uH-dP5WLl8fn-d2i9CBlXyIqR5qMh8Dek-RmhqHGmamgUlQDal81Rppg2Cl0kiggcQhULRlDaPRY3Jzu7lL82nPu7SruUze8tGAASWlEM1DmRPkUc04c7C61W5e-rZL2aMn-W7JHS_ZoSf8AKh9etw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724913447</pqid></control><display><type>article</type><title>Weather observation and forecasting using radiosonde</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Joseph, Jeyaraj Jency ; Meenal, Rajasekaran ; Josh, Francis Thomas ; Michael, Prawin Angel ; Krishnamoorthy, Vinoth Kumar ; Chandran, Giriprasad ; Veerabathran, Selve</creator><creatorcontrib>Joseph, Jeyaraj Jency ; Meenal, Rajasekaran ; Josh, Francis Thomas ; Michael, Prawin Angel ; Krishnamoorthy, Vinoth Kumar ; Chandran, Giriprasad ; Veerabathran, Selve</creatorcontrib><description>According to business today report, India recorded around 32 extreme weather events in the recent years [3]. Based on the analysis of this current paper, it is observed that all of the radiosonde instruments have small errors and can be prepared appropriate for climate studies and analysis if the suitable temperature correction models are used to correct the data [14]-[16]. [...]the data obtained by radiosondes is not only a chief input to numerical weather prediction, but also used for the model validation, research investigations on climate studies. [...]there is a need for emerging techniques such as artificial intelligence, machine learning, and deep learning methods in weather forecasting and climate research. [...]this work plays a major role in determining the agricultural pattern also. [...]by knowing the wind speed and its flow of direction, the implementation of renewable energy resources like the wind mills can be successfully done at the right areas.</description><identifier>ISSN: 1693-6930</identifier><identifier>EISSN: 2302-9293</identifier><identifier>DOI: 10.12928/telkomnika.v20i6.24247</identifier><language>eng</language><publisher>Yogyakarta: Ahmad Dahlan University</publisher><subject>Artificial intelligence ; Climate models ; Deep learning ; Energy sources ; Global positioning systems ; GPS ; Machine learning ; Meteorological satellites ; Neural networks ; Numerical prediction ; Numerical weather forecasting ; Radiosondes ; Sensors ; Temperature ; Weather forecasting ; Wind speed</subject><ispartof>Telkomnika, 2022-12, Vol.20 (6), p.1376-1383</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c200t-441a9397c2fecc90ed54f8457626198243c6d707f7ea14a099f49eff96be4ffd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Joseph, Jeyaraj Jency</creatorcontrib><creatorcontrib>Meenal, Rajasekaran</creatorcontrib><creatorcontrib>Josh, Francis Thomas</creatorcontrib><creatorcontrib>Michael, Prawin Angel</creatorcontrib><creatorcontrib>Krishnamoorthy, Vinoth Kumar</creatorcontrib><creatorcontrib>Chandran, Giriprasad</creatorcontrib><creatorcontrib>Veerabathran, Selve</creatorcontrib><title>Weather observation and forecasting using radiosonde</title><title>Telkomnika</title><description>According to business today report, India recorded around 32 extreme weather events in the recent years [3]. Based on the analysis of this current paper, it is observed that all of the radiosonde instruments have small errors and can be prepared appropriate for climate studies and analysis if the suitable temperature correction models are used to correct the data [14]-[16]. [...]the data obtained by radiosondes is not only a chief input to numerical weather prediction, but also used for the model validation, research investigations on climate studies. [...]there is a need for emerging techniques such as artificial intelligence, machine learning, and deep learning methods in weather forecasting and climate research. [...]this work plays a major role in determining the agricultural pattern also. [...]by knowing the wind speed and its flow of direction, the implementation of renewable energy resources like the wind mills can be successfully done at the right areas.</description><subject>Artificial intelligence</subject><subject>Climate models</subject><subject>Deep learning</subject><subject>Energy sources</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Machine learning</subject><subject>Meteorological satellites</subject><subject>Neural networks</subject><subject>Numerical prediction</subject><subject>Numerical weather forecasting</subject><subject>Radiosondes</subject><subject>Sensors</subject><subject>Temperature</subject><subject>Weather forecasting</subject><subject>Wind speed</subject><issn>1693-6930</issn><issn>2302-9293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkE1LAzEQhoMoWGp_gwuetyaT6WbnKMUvKHhRPIY0O9Htx6Ym24L_3rUVfGHeuTzMwCPEtZJTBQT1bc-bddx27dpNDyDbagoIaM7ECLSEkoD0uRipinQ5jLwUk5xXcoiRMKN6JPCdXf_JqYjLzOng-jZ2heuaIsTE3uW-7T6Kff7t5Jo25tg1fCUugttknvztsXh7uH-dP5WLl8fn-d2i9CBlXyIqR5qMh8Dek-RmhqHGmamgUlQDal81Rppg2Cl0kiggcQhULRlDaPRY3Jzu7lL82nPu7SruUze8tGAASWlEM1DmRPkUc04c7C61W5e-rZL2aMn-W7JHS_ZoSf8AKh9etw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Joseph, Jeyaraj Jency</creator><creator>Meenal, Rajasekaran</creator><creator>Josh, Francis Thomas</creator><creator>Michael, Prawin Angel</creator><creator>Krishnamoorthy, Vinoth Kumar</creator><creator>Chandran, Giriprasad</creator><creator>Veerabathran, Selve</creator><general>Ahmad Dahlan University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20221201</creationdate><title>Weather observation and forecasting using radiosonde</title><author>Joseph, Jeyaraj Jency ; Meenal, Rajasekaran ; Josh, Francis Thomas ; Michael, Prawin Angel ; Krishnamoorthy, Vinoth Kumar ; Chandran, Giriprasad ; Veerabathran, Selve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-441a9397c2fecc90ed54f8457626198243c6d707f7ea14a099f49eff96be4ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Climate models</topic><topic>Deep learning</topic><topic>Energy sources</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Machine learning</topic><topic>Meteorological satellites</topic><topic>Neural networks</topic><topic>Numerical prediction</topic><topic>Numerical weather forecasting</topic><topic>Radiosondes</topic><topic>Sensors</topic><topic>Temperature</topic><topic>Weather forecasting</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, Jeyaraj Jency</creatorcontrib><creatorcontrib>Meenal, Rajasekaran</creatorcontrib><creatorcontrib>Josh, Francis Thomas</creatorcontrib><creatorcontrib>Michael, Prawin Angel</creatorcontrib><creatorcontrib>Krishnamoorthy, Vinoth Kumar</creatorcontrib><creatorcontrib>Chandran, Giriprasad</creatorcontrib><creatorcontrib>Veerabathran, Selve</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Telkomnika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, Jeyaraj Jency</au><au>Meenal, Rajasekaran</au><au>Josh, Francis Thomas</au><au>Michael, Prawin Angel</au><au>Krishnamoorthy, Vinoth Kumar</au><au>Chandran, Giriprasad</au><au>Veerabathran, Selve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weather observation and forecasting using radiosonde</atitle><jtitle>Telkomnika</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>20</volume><issue>6</issue><spage>1376</spage><epage>1383</epage><pages>1376-1383</pages><issn>1693-6930</issn><eissn>2302-9293</eissn><abstract>According to business today report, India recorded around 32 extreme weather events in the recent years [3]. Based on the analysis of this current paper, it is observed that all of the radiosonde instruments have small errors and can be prepared appropriate for climate studies and analysis if the suitable temperature correction models are used to correct the data [14]-[16]. [...]the data obtained by radiosondes is not only a chief input to numerical weather prediction, but also used for the model validation, research investigations on climate studies. [...]there is a need for emerging techniques such as artificial intelligence, machine learning, and deep learning methods in weather forecasting and climate research. [...]this work plays a major role in determining the agricultural pattern also. [...]by knowing the wind speed and its flow of direction, the implementation of renewable energy resources like the wind mills can be successfully done at the right areas.</abstract><cop>Yogyakarta</cop><pub>Ahmad Dahlan University</pub><doi>10.12928/telkomnika.v20i6.24247</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1693-6930 |
ispartof | Telkomnika, 2022-12, Vol.20 (6), p.1376-1383 |
issn | 1693-6930 2302-9293 |
language | eng |
recordid | cdi_proquest_journals_2724913447 |
source | Free E-Journal (出版社公開部分のみ) |
subjects | Artificial intelligence Climate models Deep learning Energy sources Global positioning systems GPS Machine learning Meteorological satellites Neural networks Numerical prediction Numerical weather forecasting Radiosondes Sensors Temperature Weather forecasting Wind speed |
title | Weather observation and forecasting using radiosonde |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weather%20observation%20and%20forecasting%20using%20radiosonde&rft.jtitle=Telkomnika&rft.au=Joseph,%20Jeyaraj%20Jency&rft.date=2022-12-01&rft.volume=20&rft.issue=6&rft.spage=1376&rft.epage=1383&rft.pages=1376-1383&rft.issn=1693-6930&rft.eissn=2302-9293&rft_id=info:doi/10.12928/telkomnika.v20i6.24247&rft_dat=%3Cproquest_cross%3E2724913447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724913447&rft_id=info:pmid/&rfr_iscdi=true |