Theoretical study of the side reactions of ethanol-to-butadiene conversion on MgO catalyst: formation of diethyl ether, ethyl acetal, 1,3-butanediol, methyl ethyl ketone, n-butanol, butanal, and acetone

To understand the mechanistic details of the catalytic conversion of ethanol to 1,3-butadiene on metal oxides, both the main reaction and the side reactions should be clarified. Seven side reactions on an MgO catalyst were examined using density functional theory calculations. They were: the condens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical chemistry accounts 2022-11, Vol.141 (11), Article 63
Hauptverfasser: Kayanuma, Megumi, Shinke, Yu, Miyazawa, Tomohisa, Fujitani, Tadahiro, Choe, Yoong-Kee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Theoretical chemistry accounts
container_volume 141
creator Kayanuma, Megumi
Shinke, Yu
Miyazawa, Tomohisa
Fujitani, Tadahiro
Choe, Yoong-Kee
description To understand the mechanistic details of the catalytic conversion of ethanol to 1,3-butadiene on metal oxides, both the main reaction and the side reactions should be clarified. Seven side reactions on an MgO catalyst were examined using density functional theory calculations. They were: the condensation of ethanol involving dehydration, which generates diethyl ether; condensation between ethanol and acetaldehyde, which generates ethyl acetal; reduction of acetaldol, which generates 1,3-butanediol (1,3-BDO); dehydration of 1,3-BDO, which generates methyl ethyl ketone; hydrogenation of crotonaldehyde, which generates n -butanol; isomerization of crotyl alcohol, which generates butanal; and dehydrogenation and decarboxylation of acetaldol, which generate acetone. Because the ethanol-to-butadiene conversion proceeds via several reaction steps, which are catalyzed on Lewis acidic and/or basic sites, increasing the efficiency of a reaction step in the main reaction path would also increase side reaction paths of other reaction steps.
doi_str_mv 10.1007/s00214-022-02927-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2724909334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724909334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-89cf66f0df6eb8f1c1a9950b494e6e92451b0b1f67f1cfdb52874ce8d4981ffd3</originalsourceid><addsrcrecordid>eNp9kc1KxDAUhYsoOI6-gKuA26kmaaZt3MngHyhuFNyFNLlxqp1kTDLCvKJPZdoOuhPyc2_udw6Bk2WnBJ8TjKuLgDElLMeUps1pleO9bEJYQXNKC7a_q-uavB5mRyG848TTeTXJvp-X4DzEVskOhbjRW-QMiktAodWAPEgVW2dD_wpxKa3r8ujyZhOlbsECUs5-gQ-JQWk9vj0hJaPstiFeIuP8SsZhZFDC43Lb9S7gZ2hspIIEzxCZFYOnBd261K9-2XR-QHQWZsiOSD8fil4orR5MEnCcHRjZBTjZ3dPs5eb6eXGXPzzd3i-uHnJFKxzzmitTlgZrU0JTG6KI5HyOG8YZlMApm5MGN8SUVZoZ3cxpXTEFtWa8JsboYpqdjb5r7z43EKJ4dxuffhMErSjjmBcFSxQdKeVdCB6MWPt2Jf1WECz6zMSYmUhBiCEzgZOoGEUhwfYN_J_1P6ofmoyduw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724909334</pqid></control><display><type>article</type><title>Theoretical study of the side reactions of ethanol-to-butadiene conversion on MgO catalyst: formation of diethyl ether, ethyl acetal, 1,3-butanediol, methyl ethyl ketone, n-butanol, butanal, and acetone</title><source>SpringerNature Complete Journals</source><creator>Kayanuma, Megumi ; Shinke, Yu ; Miyazawa, Tomohisa ; Fujitani, Tadahiro ; Choe, Yoong-Kee</creator><creatorcontrib>Kayanuma, Megumi ; Shinke, Yu ; Miyazawa, Tomohisa ; Fujitani, Tadahiro ; Choe, Yoong-Kee</creatorcontrib><description>To understand the mechanistic details of the catalytic conversion of ethanol to 1,3-butadiene on metal oxides, both the main reaction and the side reactions should be clarified. Seven side reactions on an MgO catalyst were examined using density functional theory calculations. They were: the condensation of ethanol involving dehydration, which generates diethyl ether; condensation between ethanol and acetaldehyde, which generates ethyl acetal; reduction of acetaldol, which generates 1,3-butanediol (1,3-BDO); dehydration of 1,3-BDO, which generates methyl ethyl ketone; hydrogenation of crotonaldehyde, which generates n -butanol; isomerization of crotyl alcohol, which generates butanal; and dehydrogenation and decarboxylation of acetaldol, which generate acetone. Because the ethanol-to-butadiene conversion proceeds via several reaction steps, which are catalyzed on Lewis acidic and/or basic sites, increasing the efficiency of a reaction step in the main reaction path would also increase side reaction paths of other reaction steps.</description><identifier>ISSN: 1432-881X</identifier><identifier>EISSN: 1432-2234</identifier><identifier>DOI: 10.1007/s00214-022-02927-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetaldehyde ; Acetone ; Atomic/Molecular Structure and Spectra ; Butadiene ; Butanediol ; Butanol ; Catalysts ; Catalytic converters ; Chemistry ; Chemistry and Materials Science ; Conversion ; Decarboxylation ; Dehydration ; Dehydrogenation ; Density functional theory ; Diethyl ether ; Ethanol ; Inorganic Chemistry ; Isomerization ; Magnesium oxide ; Metal oxides ; Methyl ethyl ketone ; Organic Chemistry ; Physical Chemistry ; Theoretical and Computational Chemistry</subject><ispartof>Theoretical chemistry accounts, 2022-11, Vol.141 (11), Article 63</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-89cf66f0df6eb8f1c1a9950b494e6e92451b0b1f67f1cfdb52874ce8d4981ffd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00214-022-02927-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00214-022-02927-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kayanuma, Megumi</creatorcontrib><creatorcontrib>Shinke, Yu</creatorcontrib><creatorcontrib>Miyazawa, Tomohisa</creatorcontrib><creatorcontrib>Fujitani, Tadahiro</creatorcontrib><creatorcontrib>Choe, Yoong-Kee</creatorcontrib><title>Theoretical study of the side reactions of ethanol-to-butadiene conversion on MgO catalyst: formation of diethyl ether, ethyl acetal, 1,3-butanediol, methyl ethyl ketone, n-butanol, butanal, and acetone</title><title>Theoretical chemistry accounts</title><addtitle>Theor Chem Acc</addtitle><description>To understand the mechanistic details of the catalytic conversion of ethanol to 1,3-butadiene on metal oxides, both the main reaction and the side reactions should be clarified. Seven side reactions on an MgO catalyst were examined using density functional theory calculations. They were: the condensation of ethanol involving dehydration, which generates diethyl ether; condensation between ethanol and acetaldehyde, which generates ethyl acetal; reduction of acetaldol, which generates 1,3-butanediol (1,3-BDO); dehydration of 1,3-BDO, which generates methyl ethyl ketone; hydrogenation of crotonaldehyde, which generates n -butanol; isomerization of crotyl alcohol, which generates butanal; and dehydrogenation and decarboxylation of acetaldol, which generate acetone. Because the ethanol-to-butadiene conversion proceeds via several reaction steps, which are catalyzed on Lewis acidic and/or basic sites, increasing the efficiency of a reaction step in the main reaction path would also increase side reaction paths of other reaction steps.</description><subject>Acetaldehyde</subject><subject>Acetone</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Butadiene</subject><subject>Butanediol</subject><subject>Butanol</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Conversion</subject><subject>Decarboxylation</subject><subject>Dehydration</subject><subject>Dehydrogenation</subject><subject>Density functional theory</subject><subject>Diethyl ether</subject><subject>Ethanol</subject><subject>Inorganic Chemistry</subject><subject>Isomerization</subject><subject>Magnesium oxide</subject><subject>Metal oxides</subject><subject>Methyl ethyl ketone</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Theoretical and Computational Chemistry</subject><issn>1432-881X</issn><issn>1432-2234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KxDAUhYsoOI6-gKuA26kmaaZt3MngHyhuFNyFNLlxqp1kTDLCvKJPZdoOuhPyc2_udw6Bk2WnBJ8TjKuLgDElLMeUps1pleO9bEJYQXNKC7a_q-uavB5mRyG848TTeTXJvp-X4DzEVskOhbjRW-QMiktAodWAPEgVW2dD_wpxKa3r8ujyZhOlbsECUs5-gQ-JQWk9vj0hJaPstiFeIuP8SsZhZFDC43Lb9S7gZ2hspIIEzxCZFYOnBd261K9-2XR-QHQWZsiOSD8fil4orR5MEnCcHRjZBTjZ3dPs5eb6eXGXPzzd3i-uHnJFKxzzmitTlgZrU0JTG6KI5HyOG8YZlMApm5MGN8SUVZoZ3cxpXTEFtWa8JsboYpqdjb5r7z43EKJ4dxuffhMErSjjmBcFSxQdKeVdCB6MWPt2Jf1WECz6zMSYmUhBiCEzgZOoGEUhwfYN_J_1P6ofmoyduw</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Kayanuma, Megumi</creator><creator>Shinke, Yu</creator><creator>Miyazawa, Tomohisa</creator><creator>Fujitani, Tadahiro</creator><creator>Choe, Yoong-Kee</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>Theoretical study of the side reactions of ethanol-to-butadiene conversion on MgO catalyst: formation of diethyl ether, ethyl acetal, 1,3-butanediol, methyl ethyl ketone, n-butanol, butanal, and acetone</title><author>Kayanuma, Megumi ; Shinke, Yu ; Miyazawa, Tomohisa ; Fujitani, Tadahiro ; Choe, Yoong-Kee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-89cf66f0df6eb8f1c1a9950b494e6e92451b0b1f67f1cfdb52874ce8d4981ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetaldehyde</topic><topic>Acetone</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Butadiene</topic><topic>Butanediol</topic><topic>Butanol</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Conversion</topic><topic>Decarboxylation</topic><topic>Dehydration</topic><topic>Dehydrogenation</topic><topic>Density functional theory</topic><topic>Diethyl ether</topic><topic>Ethanol</topic><topic>Inorganic Chemistry</topic><topic>Isomerization</topic><topic>Magnesium oxide</topic><topic>Metal oxides</topic><topic>Methyl ethyl ketone</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kayanuma, Megumi</creatorcontrib><creatorcontrib>Shinke, Yu</creatorcontrib><creatorcontrib>Miyazawa, Tomohisa</creatorcontrib><creatorcontrib>Fujitani, Tadahiro</creatorcontrib><creatorcontrib>Choe, Yoong-Kee</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical chemistry accounts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kayanuma, Megumi</au><au>Shinke, Yu</au><au>Miyazawa, Tomohisa</au><au>Fujitani, Tadahiro</au><au>Choe, Yoong-Kee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study of the side reactions of ethanol-to-butadiene conversion on MgO catalyst: formation of diethyl ether, ethyl acetal, 1,3-butanediol, methyl ethyl ketone, n-butanol, butanal, and acetone</atitle><jtitle>Theoretical chemistry accounts</jtitle><stitle>Theor Chem Acc</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>141</volume><issue>11</issue><artnum>63</artnum><issn>1432-881X</issn><eissn>1432-2234</eissn><abstract>To understand the mechanistic details of the catalytic conversion of ethanol to 1,3-butadiene on metal oxides, both the main reaction and the side reactions should be clarified. Seven side reactions on an MgO catalyst were examined using density functional theory calculations. They were: the condensation of ethanol involving dehydration, which generates diethyl ether; condensation between ethanol and acetaldehyde, which generates ethyl acetal; reduction of acetaldol, which generates 1,3-butanediol (1,3-BDO); dehydration of 1,3-BDO, which generates methyl ethyl ketone; hydrogenation of crotonaldehyde, which generates n -butanol; isomerization of crotyl alcohol, which generates butanal; and dehydrogenation and decarboxylation of acetaldol, which generate acetone. Because the ethanol-to-butadiene conversion proceeds via several reaction steps, which are catalyzed on Lewis acidic and/or basic sites, increasing the efficiency of a reaction step in the main reaction path would also increase side reaction paths of other reaction steps.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00214-022-02927-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 1432-881X
ispartof Theoretical chemistry accounts, 2022-11, Vol.141 (11), Article 63
issn 1432-881X
1432-2234
language eng
recordid cdi_proquest_journals_2724909334
source SpringerNature Complete Journals
subjects Acetaldehyde
Acetone
Atomic/Molecular Structure and Spectra
Butadiene
Butanediol
Butanol
Catalysts
Catalytic converters
Chemistry
Chemistry and Materials Science
Conversion
Decarboxylation
Dehydration
Dehydrogenation
Density functional theory
Diethyl ether
Ethanol
Inorganic Chemistry
Isomerization
Magnesium oxide
Metal oxides
Methyl ethyl ketone
Organic Chemistry
Physical Chemistry
Theoretical and Computational Chemistry
title Theoretical study of the side reactions of ethanol-to-butadiene conversion on MgO catalyst: formation of diethyl ether, ethyl acetal, 1,3-butanediol, methyl ethyl ketone, n-butanol, butanal, and acetone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20of%20the%20side%20reactions%20of%20ethanol-to-butadiene%20conversion%20on%20MgO%20catalyst:%20formation%20of%20diethyl%20ether,%20ethyl%20acetal,%201,3-butanediol,%20methyl%20ethyl%20ketone,%20n-butanol,%20butanal,%20and%20acetone&rft.jtitle=Theoretical%20chemistry%20accounts&rft.au=Kayanuma,%20Megumi&rft.date=2022-11-01&rft.volume=141&rft.issue=11&rft.artnum=63&rft.issn=1432-881X&rft.eissn=1432-2234&rft_id=info:doi/10.1007/s00214-022-02927-0&rft_dat=%3Cproquest_cross%3E2724909334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724909334&rft_id=info:pmid/&rfr_iscdi=true