The Maximum Number of Stars in a Graph Without Linear Forest
For two graphs J and H , the generalized Turán number, denoted by ex ( n , J , H ), is the maximum number of copies of J in an H -free graph of order n . A linear forest F is the disjoint union of paths. In this paper, we determine e x ( n , S r , F ) when n is large enough, which generalizes the...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2022-12, Vol.38 (6), Article 173 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For two graphs
J
and
H
, the generalized Turán number, denoted by
ex
(
n
,
J
,
H
), is the maximum number of copies of
J
in an
H
-free graph of order
n
. A linear forest
F
is the disjoint union of paths. In this paper, we determine
e
x
(
n
,
S
r
,
F
)
when
n
is large enough, which generalizes the results on
e
x
(
n
,
S
r
,
P
k
)
and
e
x
(
n
,
(
k
+
1
)
P
2
)
. Finally, we prose a problem related to the number of graph copies in an
F
-free graph under shifting operations. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-022-02580-1 |