The Maximum Number of Stars in a Graph Without Linear Forest

For two graphs J and H , the generalized Turán number, denoted by ex ( n ,  J ,  H ), is the maximum number of copies of J in an H -free graph of order n . A linear forest F is the disjoint union of paths. In this paper, we determine e x ( n , S r , F ) when n is large enough, which generalizes the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2022-12, Vol.38 (6), Article 173
Hauptverfasser: Huang, Sumin, Qian, Jianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For two graphs J and H , the generalized Turán number, denoted by ex ( n ,  J ,  H ), is the maximum number of copies of J in an H -free graph of order n . A linear forest F is the disjoint union of paths. In this paper, we determine e x ( n , S r , F ) when n is large enough, which generalizes the results on e x ( n , S r , P k ) and e x ( n , ( k + 1 ) P 2 ) . Finally, we prose a problem related to the number of graph copies in an F -free graph under shifting operations.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-022-02580-1