1-Attempt parallel thinning

Thinning is a frequently used technique capable of producing all kinds of skeleton-like shape features in a topology-preserving way. It is an iterative object reduction: some border points of binary objects that satisfy some topological and geometrical constraints are deleted, and the entire process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2022-11, Vol.44 (4), p.2395-2409
Hauptverfasser: Palágyi, Kálmán, Németh, Gábor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2409
container_issue 4
container_start_page 2395
container_title Journal of combinatorial optimization
container_volume 44
creator Palágyi, Kálmán
Németh, Gábor
description Thinning is a frequently used technique capable of producing all kinds of skeleton-like shape features in a topology-preserving way. It is an iterative object reduction: some border points of binary objects that satisfy some topological and geometrical constraints are deleted, and the entire process is repeated until stability is reached. In the conventional implementation of thinning algorithms, the deletability of all border points in the actual picture is to be investigated. That is why, we introduced the concept of k -attempt thinning ( k ≥ 1 ) in our previous work (presented in the 20th International Workshop on Combinatorial Image Analysis, IWCIA 2020). In the case of a k -attempt algorithm, if a border point ‘survives’ at least k successive iterations, it is ‘immortal’ (i.e., it cannot be deleted later). In this paper, we give a computationally efficient implementation scheme for 1-attempt thinning, and a 1-attempt 2D parallel thinning algorithm is reported. The advantage of the new implementation scheme over the conventional one is also illustrated.
doi_str_mv 10.1007/s10878-021-00744-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2724905695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724905695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-5e91271cf0b453d6364dcc77afe6f3ce139c45bdc309a7bfba44c39f94d2e4773</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwB-BSibNh_Y6PVcVLqsQFzpbj2CVVmgTbPeTfYwgSN047K83Mrj6ErgncEQB1nwhUqsJACS4r53g6QQsiFMO0quRp0ayiWGoQ5-gipT0AFM0X6Ibgdc7-MObVaKPtOt-t8kfb922_u0RnwXbJX_3OJXp_fHjbPOPt69PLZr3FjgJkLLwmVBEXoOaCNZJJ3jinlA1eBuY8YdpxUTeOgbaqDrXl3DEdNG-o50qxJbqde8c4fB59ymY_HGNfThqqKC-PSi2Ki84uF4eUog9mjO3BxskQMN8QzAzBFAjmB4KZSojNoVTM_c7Hv-p_Ul-iR15V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724905695</pqid></control><display><type>article</type><title>1-Attempt parallel thinning</title><source>Springer Nature - Complete Springer Journals</source><creator>Palágyi, Kálmán ; Németh, Gábor</creator><creatorcontrib>Palágyi, Kálmán ; Németh, Gábor</creatorcontrib><description>Thinning is a frequently used technique capable of producing all kinds of skeleton-like shape features in a topology-preserving way. It is an iterative object reduction: some border points of binary objects that satisfy some topological and geometrical constraints are deleted, and the entire process is repeated until stability is reached. In the conventional implementation of thinning algorithms, the deletability of all border points in the actual picture is to be investigated. That is why, we introduced the concept of k -attempt thinning ( k ≥ 1 ) in our previous work (presented in the 20th International Workshop on Combinatorial Image Analysis, IWCIA 2020). In the case of a k -attempt algorithm, if a border point ‘survives’ at least k successive iterations, it is ‘immortal’ (i.e., it cannot be deleted later). In this paper, we give a computationally efficient implementation scheme for 1-attempt thinning, and a 1-attempt 2D parallel thinning algorithm is reported. The advantage of the new implementation scheme over the conventional one is also illustrated.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-021-00744-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Combinatorial analysis ; Combinatorics ; Convex and Discrete Geometry ; Image analysis ; Iterative methods ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Theory of Computation ; Thinning ; Topology</subject><ispartof>Journal of combinatorial optimization, 2022-11, Vol.44 (4), p.2395-2409</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-5e91271cf0b453d6364dcc77afe6f3ce139c45bdc309a7bfba44c39f94d2e4773</cites><orcidid>0000-0002-3274-7315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-021-00744-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-021-00744-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Palágyi, Kálmán</creatorcontrib><creatorcontrib>Németh, Gábor</creatorcontrib><title>1-Attempt parallel thinning</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>Thinning is a frequently used technique capable of producing all kinds of skeleton-like shape features in a topology-preserving way. It is an iterative object reduction: some border points of binary objects that satisfy some topological and geometrical constraints are deleted, and the entire process is repeated until stability is reached. In the conventional implementation of thinning algorithms, the deletability of all border points in the actual picture is to be investigated. That is why, we introduced the concept of k -attempt thinning ( k ≥ 1 ) in our previous work (presented in the 20th International Workshop on Combinatorial Image Analysis, IWCIA 2020). In the case of a k -attempt algorithm, if a border point ‘survives’ at least k successive iterations, it is ‘immortal’ (i.e., it cannot be deleted later). In this paper, we give a computationally efficient implementation scheme for 1-attempt thinning, and a 1-attempt 2D parallel thinning algorithm is reported. The advantage of the new implementation scheme over the conventional one is also illustrated.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Image analysis</subject><subject>Iterative methods</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Theory of Computation</subject><subject>Thinning</subject><subject>Topology</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwB-BSibNh_Y6PVcVLqsQFzpbj2CVVmgTbPeTfYwgSN047K83Mrj6ErgncEQB1nwhUqsJACS4r53g6QQsiFMO0quRp0ayiWGoQ5-gipT0AFM0X6Ibgdc7-MObVaKPtOt-t8kfb922_u0RnwXbJX_3OJXp_fHjbPOPt69PLZr3FjgJkLLwmVBEXoOaCNZJJ3jinlA1eBuY8YdpxUTeOgbaqDrXl3DEdNG-o50qxJbqde8c4fB59ymY_HGNfThqqKC-PSi2Ki84uF4eUog9mjO3BxskQMN8QzAzBFAjmB4KZSojNoVTM_c7Hv-p_Ul-iR15V</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Palágyi, Kálmán</creator><creator>Németh, Gábor</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3274-7315</orcidid></search><sort><creationdate>20221101</creationdate><title>1-Attempt parallel thinning</title><author>Palágyi, Kálmán ; Németh, Gábor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-5e91271cf0b453d6364dcc77afe6f3ce139c45bdc309a7bfba44c39f94d2e4773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Image analysis</topic><topic>Iterative methods</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Theory of Computation</topic><topic>Thinning</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palágyi, Kálmán</creatorcontrib><creatorcontrib>Németh, Gábor</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palágyi, Kálmán</au><au>Németh, Gábor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1-Attempt parallel thinning</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>44</volume><issue>4</issue><spage>2395</spage><epage>2409</epage><pages>2395-2409</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>Thinning is a frequently used technique capable of producing all kinds of skeleton-like shape features in a topology-preserving way. It is an iterative object reduction: some border points of binary objects that satisfy some topological and geometrical constraints are deleted, and the entire process is repeated until stability is reached. In the conventional implementation of thinning algorithms, the deletability of all border points in the actual picture is to be investigated. That is why, we introduced the concept of k -attempt thinning ( k ≥ 1 ) in our previous work (presented in the 20th International Workshop on Combinatorial Image Analysis, IWCIA 2020). In the case of a k -attempt algorithm, if a border point ‘survives’ at least k successive iterations, it is ‘immortal’ (i.e., it cannot be deleted later). In this paper, we give a computationally efficient implementation scheme for 1-attempt thinning, and a 1-attempt 2D parallel thinning algorithm is reported. The advantage of the new implementation scheme over the conventional one is also illustrated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-021-00744-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3274-7315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-6905
ispartof Journal of combinatorial optimization, 2022-11, Vol.44 (4), p.2395-2409
issn 1382-6905
1573-2886
language eng
recordid cdi_proquest_journals_2724905695
source Springer Nature - Complete Springer Journals
subjects Algorithms
Combinatorial analysis
Combinatorics
Convex and Discrete Geometry
Image analysis
Iterative methods
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Theory of Computation
Thinning
Topology
title 1-Attempt parallel thinning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1-Attempt%20parallel%20thinning&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Pal%C3%A1gyi,%20K%C3%A1lm%C3%A1n&rft.date=2022-11-01&rft.volume=44&rft.issue=4&rft.spage=2395&rft.epage=2409&rft.pages=2395-2409&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-021-00744-y&rft_dat=%3Cproquest_cross%3E2724905695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724905695&rft_id=info:pmid/&rfr_iscdi=true