Mahalanobis-ANOVA criterion for optimum feature subset selection in multi-class planetary gear fault diagnosis

The empirical analysis of a typical gear fault diagnosis of five different classes has been studied in this article. The analysis was used to develop novel feature selection criteria that provide an optimum feature subset over feature ranking genetic algorithms for improving the planetary gear fault...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and control 2022-11, Vol.28 (21-22), p.3257-3268
Hauptverfasser: Suresh, Setti, Naidu, VPS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!