Magnetic Field and Density Models in the Zebra Source Region

Using the double-plasma resonance model of solar radio zebras, we analyze five models of the magnetic field and density in the zebra source region. We present analytical relations of zebra-stripe frequencies depending on the gyro-harmonic number. By fitting of observed zebra-stripe frequencies using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar physics 2022-10, Vol.297 (10), Article 133
Hauptverfasser: Yasnov, L. V., Karlický, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Solar physics
container_volume 297
creator Yasnov, L. V.
Karlický, M.
description Using the double-plasma resonance model of solar radio zebras, we analyze five models of the magnetic field and density in the zebra source region. We present analytical relations of zebra-stripe frequencies depending on the gyro-harmonic number. By fitting of observed zebra-stripe frequencies using model frequencies, we find that the determined gyro-harmonic number and corresponding magnetic field depend on the model used. We show that all previously analyzed zebras, where the absolute value of the difference between neighboring zebra-stripe frequencies increases with respect to increasing frequency, can be well fitted by the model with exponential dependencies of the magnetic field and density or by the model with smaller gradients of both of these variables. Although these models give different results, their more sophisticated versions give more similar results. We also present the models that can fit the zebras, if observed, where the absolute value of the difference between neighboring zebra-stripe frequencies decreases with respect to increasing frequency. We check all these models by a fitting of the zebra-stripe frequencies observed in the 21 June 2011 zebra event. In one model, although it reasonably describes the conditions in the atmosphere above the active region, the fit of the observed zebra-stripe frequencies could not be made.
doi_str_mv 10.1007/s11207-022-02067-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2724424106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724424106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-a13c9ec8047703cee78f82d03aaa06f89f2c4123287988d68069eaeb5c7594dc3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFe_gKeA5-okaZsUvMjqrsIugn9AvIRsOq1darom3cN-e7NW8OZhmDm835uZR8g5g0sGIK8CYxxkCpzHgkKm-QFJWC5FCqV4OyQJgFD7WR2TkxDWAHssT8j10jQOh9bSWYtdRY2r6C260A47uuwr7AJtHR0-kL7jyhv63G-9RfqETdu7U3JUmy7g2W-fkNfZ3cv0Pl08zh-mN4vUcoAhNUzYEq2CTEoQFlGqWvEKhDEGilqVNbcZ44IrWSpVFQqKEg2ucivzMqusmJCL0Xfj-68thkGv4xkurtRc8izjGYMiqviosr4PwWOtN779NH6nGej9u3pMSceU9E9KOo-QGKEQxa5B_2f9D_UNjgFoMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724424106</pqid></control><display><type>article</type><title>Magnetic Field and Density Models in the Zebra Source Region</title><source>SpringerLink Journals</source><creator>Yasnov, L. V. ; Karlický, M.</creator><creatorcontrib>Yasnov, L. V. ; Karlický, M.</creatorcontrib><description>Using the double-plasma resonance model of solar radio zebras, we analyze five models of the magnetic field and density in the zebra source region. We present analytical relations of zebra-stripe frequencies depending on the gyro-harmonic number. By fitting of observed zebra-stripe frequencies using model frequencies, we find that the determined gyro-harmonic number and corresponding magnetic field depend on the model used. We show that all previously analyzed zebras, where the absolute value of the difference between neighboring zebra-stripe frequencies increases with respect to increasing frequency, can be well fitted by the model with exponential dependencies of the magnetic field and density or by the model with smaller gradients of both of these variables. Although these models give different results, their more sophisticated versions give more similar results. We also present the models that can fit the zebras, if observed, where the absolute value of the difference between neighboring zebra-stripe frequencies decreases with respect to increasing frequency. We check all these models by a fitting of the zebra-stripe frequencies observed in the 21 June 2011 zebra event. In one model, although it reasonably describes the conditions in the atmosphere above the active region, the fit of the observed zebra-stripe frequencies could not be made.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-022-02067-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrophysics and Astroparticles ; Atmospheric models ; Atmospheric Sciences ; Density ; Magnetic fields ; Modelling ; Physics ; Physics and Astronomy ; Plasma resonance ; Solar physics ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>Solar physics, 2022-10, Vol.297 (10), Article 133</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-a13c9ec8047703cee78f82d03aaa06f89f2c4123287988d68069eaeb5c7594dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11207-022-02067-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11207-022-02067-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yasnov, L. V.</creatorcontrib><creatorcontrib>Karlický, M.</creatorcontrib><title>Magnetic Field and Density Models in the Zebra Source Region</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>Using the double-plasma resonance model of solar radio zebras, we analyze five models of the magnetic field and density in the zebra source region. We present analytical relations of zebra-stripe frequencies depending on the gyro-harmonic number. By fitting of observed zebra-stripe frequencies using model frequencies, we find that the determined gyro-harmonic number and corresponding magnetic field depend on the model used. We show that all previously analyzed zebras, where the absolute value of the difference between neighboring zebra-stripe frequencies increases with respect to increasing frequency, can be well fitted by the model with exponential dependencies of the magnetic field and density or by the model with smaller gradients of both of these variables. Although these models give different results, their more sophisticated versions give more similar results. We also present the models that can fit the zebras, if observed, where the absolute value of the difference between neighboring zebra-stripe frequencies decreases with respect to increasing frequency. We check all these models by a fitting of the zebra-stripe frequencies observed in the 21 June 2011 zebra event. In one model, although it reasonably describes the conditions in the atmosphere above the active region, the fit of the observed zebra-stripe frequencies could not be made.</description><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric models</subject><subject>Atmospheric Sciences</subject><subject>Density</subject><subject>Magnetic fields</subject><subject>Modelling</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma resonance</subject><subject>Solar physics</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LxDAQxYMoWFe_gKeA5-okaZsUvMjqrsIugn9AvIRsOq1darom3cN-e7NW8OZhmDm835uZR8g5g0sGIK8CYxxkCpzHgkKm-QFJWC5FCqV4OyQJgFD7WR2TkxDWAHssT8j10jQOh9bSWYtdRY2r6C260A47uuwr7AJtHR0-kL7jyhv63G-9RfqETdu7U3JUmy7g2W-fkNfZ3cv0Pl08zh-mN4vUcoAhNUzYEq2CTEoQFlGqWvEKhDEGilqVNbcZ44IrWSpVFQqKEg2ucivzMqusmJCL0Xfj-68thkGv4xkurtRc8izjGYMiqviosr4PwWOtN779NH6nGej9u3pMSceU9E9KOo-QGKEQxa5B_2f9D_UNjgFoMw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Yasnov, L. V.</creator><creator>Karlický, M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20221001</creationdate><title>Magnetic Field and Density Models in the Zebra Source Region</title><author>Yasnov, L. V. ; Karlický, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-a13c9ec8047703cee78f82d03aaa06f89f2c4123287988d68069eaeb5c7594dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric models</topic><topic>Atmospheric Sciences</topic><topic>Density</topic><topic>Magnetic fields</topic><topic>Modelling</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma resonance</topic><topic>Solar physics</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yasnov, L. V.</creatorcontrib><creatorcontrib>Karlický, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yasnov, L. V.</au><au>Karlický, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Field and Density Models in the Zebra Source Region</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>297</volume><issue>10</issue><artnum>133</artnum><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>Using the double-plasma resonance model of solar radio zebras, we analyze five models of the magnetic field and density in the zebra source region. We present analytical relations of zebra-stripe frequencies depending on the gyro-harmonic number. By fitting of observed zebra-stripe frequencies using model frequencies, we find that the determined gyro-harmonic number and corresponding magnetic field depend on the model used. We show that all previously analyzed zebras, where the absolute value of the difference between neighboring zebra-stripe frequencies increases with respect to increasing frequency, can be well fitted by the model with exponential dependencies of the magnetic field and density or by the model with smaller gradients of both of these variables. Although these models give different results, their more sophisticated versions give more similar results. We also present the models that can fit the zebras, if observed, where the absolute value of the difference between neighboring zebra-stripe frequencies decreases with respect to increasing frequency. We check all these models by a fitting of the zebra-stripe frequencies observed in the 21 June 2011 zebra event. In one model, although it reasonably describes the conditions in the atmosphere above the active region, the fit of the observed zebra-stripe frequencies could not be made.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-022-02067-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 0038-0938
ispartof Solar physics, 2022-10, Vol.297 (10), Article 133
issn 0038-0938
1573-093X
language eng
recordid cdi_proquest_journals_2724424106
source SpringerLink Journals
subjects Astrophysics and Astroparticles
Atmospheric models
Atmospheric Sciences
Density
Magnetic fields
Modelling
Physics
Physics and Astronomy
Plasma resonance
Solar physics
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
title Magnetic Field and Density Models in the Zebra Source Region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Field%20and%20Density%20Models%20in%20the%20Zebra%20Source%20Region&rft.jtitle=Solar%20physics&rft.au=Yasnov,%20L.%20V.&rft.date=2022-10-01&rft.volume=297&rft.issue=10&rft.artnum=133&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-022-02067-5&rft_dat=%3Cproquest_cross%3E2724424106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724424106&rft_id=info:pmid/&rfr_iscdi=true