FlowDrone: Wind Estimation and Gust Rejection on UAVs Using Fast-Response Hot-Wire Flow Sensors
Unmanned aerial vehicles (UAVs) are finding use in applications that place increasing emphasis on robustness to external disturbances including extreme wind. However, traditional multirotor UAV platforms do not directly sense wind; conventional flow sensors are too slow, insensitive, or bulky for wi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Simon, Nathaniel Ren, Allen Z Piqué, Alexander Snyder, David Barretto, Daphne Hultmark, Marcus Majumdar, Anirudha |
description | Unmanned aerial vehicles (UAVs) are finding use in applications that place increasing emphasis on robustness to external disturbances including extreme wind. However, traditional multirotor UAV platforms do not directly sense wind; conventional flow sensors are too slow, insensitive, or bulky for widespread integration on UAVs. Instead, drones typically observe the effects of wind indirectly through accumulated errors in position or trajectory tracking. In this work, we integrate a novel flow sensor based on micro-electro-mechanical systems (MEMS) hot-wire technology developed in our prior work onto a multirotor UAV for wind estimation. These sensors are omnidirectional, lightweight, fast, and accurate. In order to achieve superior tracking performance in windy conditions, we train a `wind-aware' residual-based controller via reinforcement learning using simulated wind gusts and their aerodynamic effects on the drone. In extensive hardware experiments, we demonstrate the wind-aware controller outperforming two strong `wind-unaware' baseline controllers in challenging windy conditions. See: https://youtu.be/KWqkH9Z-338. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2724396007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724396007</sourcerecordid><originalsourceid>FETCH-proquest_journals_27243960073</originalsourceid><addsrcrecordid>eNqNjM0KwjAQhIMgWLTvsOC5EJP-qDfR1p7V2mMpukpKTWo2xde3ig8gDAzzzTAj5gkpF8EyFGLCfKKGcy7iRESR9FiVtea1s0bjGkqlr5CSU4_aKaOhHuK-JwcHbPDyRYOKzZmgIKXvkNXkggNSZzQh5MYFpbIIn0s4oiZjacbGt7ol9H8-ZfMsPW3zoLPm2SO5qjG91UNViUSEchVznsj_Vm8EGUNm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724396007</pqid></control><display><type>article</type><title>FlowDrone: Wind Estimation and Gust Rejection on UAVs Using Fast-Response Hot-Wire Flow Sensors</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Simon, Nathaniel ; Ren, Allen Z ; Piqué, Alexander ; Snyder, David ; Barretto, Daphne ; Hultmark, Marcus ; Majumdar, Anirudha</creator><creatorcontrib>Simon, Nathaniel ; Ren, Allen Z ; Piqué, Alexander ; Snyder, David ; Barretto, Daphne ; Hultmark, Marcus ; Majumdar, Anirudha</creatorcontrib><description>Unmanned aerial vehicles (UAVs) are finding use in applications that place increasing emphasis on robustness to external disturbances including extreme wind. However, traditional multirotor UAV platforms do not directly sense wind; conventional flow sensors are too slow, insensitive, or bulky for widespread integration on UAVs. Instead, drones typically observe the effects of wind indirectly through accumulated errors in position or trajectory tracking. In this work, we integrate a novel flow sensor based on micro-electro-mechanical systems (MEMS) hot-wire technology developed in our prior work onto a multirotor UAV for wind estimation. These sensors are omnidirectional, lightweight, fast, and accurate. In order to achieve superior tracking performance in windy conditions, we train a `wind-aware' residual-based controller via reinforcement learning using simulated wind gusts and their aerodynamic effects on the drone. In extensive hardware experiments, we demonstrate the wind-aware controller outperforming two strong `wind-unaware' baseline controllers in challenging windy conditions. See: https://youtu.be/KWqkH9Z-338.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Controllers ; Gusts ; Microelectromechanical systems ; Sensors ; Tracking ; Unmanned aerial vehicles ; Wind effects ; Wire</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Simon, Nathaniel</creatorcontrib><creatorcontrib>Ren, Allen Z</creatorcontrib><creatorcontrib>Piqué, Alexander</creatorcontrib><creatorcontrib>Snyder, David</creatorcontrib><creatorcontrib>Barretto, Daphne</creatorcontrib><creatorcontrib>Hultmark, Marcus</creatorcontrib><creatorcontrib>Majumdar, Anirudha</creatorcontrib><title>FlowDrone: Wind Estimation and Gust Rejection on UAVs Using Fast-Response Hot-Wire Flow Sensors</title><title>arXiv.org</title><description>Unmanned aerial vehicles (UAVs) are finding use in applications that place increasing emphasis on robustness to external disturbances including extreme wind. However, traditional multirotor UAV platforms do not directly sense wind; conventional flow sensors are too slow, insensitive, or bulky for widespread integration on UAVs. Instead, drones typically observe the effects of wind indirectly through accumulated errors in position or trajectory tracking. In this work, we integrate a novel flow sensor based on micro-electro-mechanical systems (MEMS) hot-wire technology developed in our prior work onto a multirotor UAV for wind estimation. These sensors are omnidirectional, lightweight, fast, and accurate. In order to achieve superior tracking performance in windy conditions, we train a `wind-aware' residual-based controller via reinforcement learning using simulated wind gusts and their aerodynamic effects on the drone. In extensive hardware experiments, we demonstrate the wind-aware controller outperforming two strong `wind-unaware' baseline controllers in challenging windy conditions. See: https://youtu.be/KWqkH9Z-338.</description><subject>Controllers</subject><subject>Gusts</subject><subject>Microelectromechanical systems</subject><subject>Sensors</subject><subject>Tracking</subject><subject>Unmanned aerial vehicles</subject><subject>Wind effects</subject><subject>Wire</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjM0KwjAQhIMgWLTvsOC5EJP-qDfR1p7V2mMpukpKTWo2xde3ig8gDAzzzTAj5gkpF8EyFGLCfKKGcy7iRESR9FiVtea1s0bjGkqlr5CSU4_aKaOhHuK-JwcHbPDyRYOKzZmgIKXvkNXkggNSZzQh5MYFpbIIn0s4oiZjacbGt7ol9H8-ZfMsPW3zoLPm2SO5qjG91UNViUSEchVznsj_Vm8EGUNm</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Simon, Nathaniel</creator><creator>Ren, Allen Z</creator><creator>Piqué, Alexander</creator><creator>Snyder, David</creator><creator>Barretto, Daphne</creator><creator>Hultmark, Marcus</creator><creator>Majumdar, Anirudha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221025</creationdate><title>FlowDrone: Wind Estimation and Gust Rejection on UAVs Using Fast-Response Hot-Wire Flow Sensors</title><author>Simon, Nathaniel ; Ren, Allen Z ; Piqué, Alexander ; Snyder, David ; Barretto, Daphne ; Hultmark, Marcus ; Majumdar, Anirudha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27243960073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Controllers</topic><topic>Gusts</topic><topic>Microelectromechanical systems</topic><topic>Sensors</topic><topic>Tracking</topic><topic>Unmanned aerial vehicles</topic><topic>Wind effects</topic><topic>Wire</topic><toplevel>online_resources</toplevel><creatorcontrib>Simon, Nathaniel</creatorcontrib><creatorcontrib>Ren, Allen Z</creatorcontrib><creatorcontrib>Piqué, Alexander</creatorcontrib><creatorcontrib>Snyder, David</creatorcontrib><creatorcontrib>Barretto, Daphne</creatorcontrib><creatorcontrib>Hultmark, Marcus</creatorcontrib><creatorcontrib>Majumdar, Anirudha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Nathaniel</au><au>Ren, Allen Z</au><au>Piqué, Alexander</au><au>Snyder, David</au><au>Barretto, Daphne</au><au>Hultmark, Marcus</au><au>Majumdar, Anirudha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>FlowDrone: Wind Estimation and Gust Rejection on UAVs Using Fast-Response Hot-Wire Flow Sensors</atitle><jtitle>arXiv.org</jtitle><date>2022-10-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Unmanned aerial vehicles (UAVs) are finding use in applications that place increasing emphasis on robustness to external disturbances including extreme wind. However, traditional multirotor UAV platforms do not directly sense wind; conventional flow sensors are too slow, insensitive, or bulky for widespread integration on UAVs. Instead, drones typically observe the effects of wind indirectly through accumulated errors in position or trajectory tracking. In this work, we integrate a novel flow sensor based on micro-electro-mechanical systems (MEMS) hot-wire technology developed in our prior work onto a multirotor UAV for wind estimation. These sensors are omnidirectional, lightweight, fast, and accurate. In order to achieve superior tracking performance in windy conditions, we train a `wind-aware' residual-based controller via reinforcement learning using simulated wind gusts and their aerodynamic effects on the drone. In extensive hardware experiments, we demonstrate the wind-aware controller outperforming two strong `wind-unaware' baseline controllers in challenging windy conditions. See: https://youtu.be/KWqkH9Z-338.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2724396007 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Controllers Gusts Microelectromechanical systems Sensors Tracking Unmanned aerial vehicles Wind effects Wire |
title | FlowDrone: Wind Estimation and Gust Rejection on UAVs Using Fast-Response Hot-Wire Flow Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=FlowDrone:%20Wind%20Estimation%20and%20Gust%20Rejection%20on%20UAVs%20Using%20Fast-Response%20Hot-Wire%20Flow%20Sensors&rft.jtitle=arXiv.org&rft.au=Simon,%20Nathaniel&rft.date=2022-10-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2724396007%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724396007&rft_id=info:pmid/&rfr_iscdi=true |