A Novel COVID-19 Detection Technique Using Deep Learning Based Approaches

The COVID-19 pandemic affects individuals in many ways and has spread worldwide. Current methods of COVID-19 detection are based on physicians analyzing the patient’s symptoms. Machine learning with deep learning approaches applied to image processing techniques also plays a role in identifying COVI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-09, Vol.14 (19), p.12222
Hauptverfasser: Al Shehri, Waleed, Almalki, Jameel, Mehmood, Rashid, Alsaif, Khalid, Alshahrani, Saeed M, Jannah, Najlaa, Alangari, Someah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 12222
container_title Sustainability
container_volume 14
creator Al Shehri, Waleed
Almalki, Jameel
Mehmood, Rashid
Alsaif, Khalid
Alshahrani, Saeed M
Jannah, Najlaa
Alangari, Someah
description The COVID-19 pandemic affects individuals in many ways and has spread worldwide. Current methods of COVID-19 detection are based on physicians analyzing the patient’s symptoms. Machine learning with deep learning approaches applied to image processing techniques also plays a role in identifying COVID-19 from minor symptoms. The problem is that such models do not provide high performance, which impacts timely decision-making. Early disease detection in many places is limited due to the lack of expensive resources. This study employed pre-implemented instances of a convolutional neural network and Darknet to process CT scans and X-ray images. Results show that the proposed new models outperformed the state-of-the-art methods by approximately 10% in accuracy. The results will help physicians and the health care system make preemptive decisions regarding patient health. The current approach might be used jointly with existing health care systems to detect and monitor cases of COVID-19 disease quickly.
doi_str_mv 10.3390/su141912222
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2724321369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746960199</galeid><sourcerecordid>A746960199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-ab58e2603ae6bfc678aa11101ad9b7de92960eff0d416ac27eb0fa06220195d83</originalsourceid><addsrcrecordid>eNptkV1LwzAUhoMoOHRX_oGCVyKd-ejS5bJufhSGA928DWl6smVsbU1a0X9vxgQ38JyLk5PzvHkDB6ErggeMCXznO5IQQWiIE9SjOCUxwUN8enA-R33v1zgEYwHlPZRn0Uv9CZtoPHvPJzER0QRa0K2tq2gOelXZjw6ihbfVMkygiaagXLXr7pWHMsqaxtVKr8BfojOjNh76v_UCLR4f5uPneDp7ysfZNNZMiDZWxXAElGOmgBdG83SkFCEEE1WKIi1BUMExGIPLhHClaQoFNgpzSjERw3LELtD1_t1gHP7mW7muO1cFS0lTmjBKGBd_1FJtQNrK1K1Temu9llma8OBBxI4a_EOFLGFrdV2BseH-SHBzJAhMC1_tUnXey_zt9Zi93bPa1d47MLJxdqvctyRY7jYmDzbGfgCiGINs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724321369</pqid></control><display><type>article</type><title>A Novel COVID-19 Detection Technique Using Deep Learning Based Approaches</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Al Shehri, Waleed ; Almalki, Jameel ; Mehmood, Rashid ; Alsaif, Khalid ; Alshahrani, Saeed M ; Jannah, Najlaa ; Alangari, Someah</creator><creatorcontrib>Al Shehri, Waleed ; Almalki, Jameel ; Mehmood, Rashid ; Alsaif, Khalid ; Alshahrani, Saeed M ; Jannah, Najlaa ; Alangari, Someah</creatorcontrib><description>The COVID-19 pandemic affects individuals in many ways and has spread worldwide. Current methods of COVID-19 detection are based on physicians analyzing the patient’s symptoms. Machine learning with deep learning approaches applied to image processing techniques also plays a role in identifying COVID-19 from minor symptoms. The problem is that such models do not provide high performance, which impacts timely decision-making. Early disease detection in many places is limited due to the lack of expensive resources. This study employed pre-implemented instances of a convolutional neural network and Darknet to process CT scans and X-ray images. Results show that the proposed new models outperformed the state-of-the-art methods by approximately 10% in accuracy. The results will help physicians and the health care system make preemptive decisions regarding patient health. The current approach might be used jointly with existing health care systems to detect and monitor cases of COVID-19 disease quickly.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su141912222</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Big Data ; Blockchain ; Computed tomography ; Coronaviruses ; COVID-19 ; COVID-19 vaccines ; Data analysis ; Datasets ; Decision making ; Deep learning ; Disease detection ; Health aspects ; Health care ; Image processing ; Lung diseases ; Machine learning ; Medical imaging ; Neural networks ; Pandemics ; Patients ; Physicians ; Preempting ; Severe acute respiratory syndrome coronavirus 2 ; Signs and symptoms ; Sustainability</subject><ispartof>Sustainability, 2022-09, Vol.14 (19), p.12222</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-ab58e2603ae6bfc678aa11101ad9b7de92960eff0d416ac27eb0fa06220195d83</citedby><cites>FETCH-LOGICAL-c399t-ab58e2603ae6bfc678aa11101ad9b7de92960eff0d416ac27eb0fa06220195d83</cites><orcidid>0000-0003-1308-1762 ; 0000-0003-2862-4897 ; 0000-0002-4997-5322 ; 0000-0003-0499-7170 ; 0000-0001-6288-6474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Al Shehri, Waleed</creatorcontrib><creatorcontrib>Almalki, Jameel</creatorcontrib><creatorcontrib>Mehmood, Rashid</creatorcontrib><creatorcontrib>Alsaif, Khalid</creatorcontrib><creatorcontrib>Alshahrani, Saeed M</creatorcontrib><creatorcontrib>Jannah, Najlaa</creatorcontrib><creatorcontrib>Alangari, Someah</creatorcontrib><title>A Novel COVID-19 Detection Technique Using Deep Learning Based Approaches</title><title>Sustainability</title><description>The COVID-19 pandemic affects individuals in many ways and has spread worldwide. Current methods of COVID-19 detection are based on physicians analyzing the patient’s symptoms. Machine learning with deep learning approaches applied to image processing techniques also plays a role in identifying COVID-19 from minor symptoms. The problem is that such models do not provide high performance, which impacts timely decision-making. Early disease detection in many places is limited due to the lack of expensive resources. This study employed pre-implemented instances of a convolutional neural network and Darknet to process CT scans and X-ray images. Results show that the proposed new models outperformed the state-of-the-art methods by approximately 10% in accuracy. The results will help physicians and the health care system make preemptive decisions regarding patient health. The current approach might be used jointly with existing health care systems to detect and monitor cases of COVID-19 disease quickly.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Blockchain</subject><subject>Computed tomography</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 vaccines</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Disease detection</subject><subject>Health aspects</subject><subject>Health care</subject><subject>Image processing</subject><subject>Lung diseases</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Pandemics</subject><subject>Patients</subject><subject>Physicians</subject><subject>Preempting</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Signs and symptoms</subject><subject>Sustainability</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkV1LwzAUhoMoOHRX_oGCVyKd-ejS5bJufhSGA928DWl6smVsbU1a0X9vxgQ38JyLk5PzvHkDB6ErggeMCXznO5IQQWiIE9SjOCUxwUN8enA-R33v1zgEYwHlPZRn0Uv9CZtoPHvPJzER0QRa0K2tq2gOelXZjw6ihbfVMkygiaagXLXr7pWHMsqaxtVKr8BfojOjNh76v_UCLR4f5uPneDp7ysfZNNZMiDZWxXAElGOmgBdG83SkFCEEE1WKIi1BUMExGIPLhHClaQoFNgpzSjERw3LELtD1_t1gHP7mW7muO1cFS0lTmjBKGBd_1FJtQNrK1K1Temu9llma8OBBxI4a_EOFLGFrdV2BseH-SHBzJAhMC1_tUnXey_zt9Zi93bPa1d47MLJxdqvctyRY7jYmDzbGfgCiGINs</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Al Shehri, Waleed</creator><creator>Almalki, Jameel</creator><creator>Mehmood, Rashid</creator><creator>Alsaif, Khalid</creator><creator>Alshahrani, Saeed M</creator><creator>Jannah, Najlaa</creator><creator>Alangari, Someah</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1308-1762</orcidid><orcidid>https://orcid.org/0000-0003-2862-4897</orcidid><orcidid>https://orcid.org/0000-0002-4997-5322</orcidid><orcidid>https://orcid.org/0000-0003-0499-7170</orcidid><orcidid>https://orcid.org/0000-0001-6288-6474</orcidid></search><sort><creationdate>20220901</creationdate><title>A Novel COVID-19 Detection Technique Using Deep Learning Based Approaches</title><author>Al Shehri, Waleed ; Almalki, Jameel ; Mehmood, Rashid ; Alsaif, Khalid ; Alshahrani, Saeed M ; Jannah, Najlaa ; Alangari, Someah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-ab58e2603ae6bfc678aa11101ad9b7de92960eff0d416ac27eb0fa06220195d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Blockchain</topic><topic>Computed tomography</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 vaccines</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Disease detection</topic><topic>Health aspects</topic><topic>Health care</topic><topic>Image processing</topic><topic>Lung diseases</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Pandemics</topic><topic>Patients</topic><topic>Physicians</topic><topic>Preempting</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Signs and symptoms</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Shehri, Waleed</creatorcontrib><creatorcontrib>Almalki, Jameel</creatorcontrib><creatorcontrib>Mehmood, Rashid</creatorcontrib><creatorcontrib>Alsaif, Khalid</creatorcontrib><creatorcontrib>Alshahrani, Saeed M</creatorcontrib><creatorcontrib>Jannah, Najlaa</creatorcontrib><creatorcontrib>Alangari, Someah</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al Shehri, Waleed</au><au>Almalki, Jameel</au><au>Mehmood, Rashid</au><au>Alsaif, Khalid</au><au>Alshahrani, Saeed M</au><au>Jannah, Najlaa</au><au>Alangari, Someah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel COVID-19 Detection Technique Using Deep Learning Based Approaches</atitle><jtitle>Sustainability</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>14</volume><issue>19</issue><spage>12222</spage><pages>12222-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The COVID-19 pandemic affects individuals in many ways and has spread worldwide. Current methods of COVID-19 detection are based on physicians analyzing the patient’s symptoms. Machine learning with deep learning approaches applied to image processing techniques also plays a role in identifying COVID-19 from minor symptoms. The problem is that such models do not provide high performance, which impacts timely decision-making. Early disease detection in many places is limited due to the lack of expensive resources. This study employed pre-implemented instances of a convolutional neural network and Darknet to process CT scans and X-ray images. Results show that the proposed new models outperformed the state-of-the-art methods by approximately 10% in accuracy. The results will help physicians and the health care system make preemptive decisions regarding patient health. The current approach might be used jointly with existing health care systems to detect and monitor cases of COVID-19 disease quickly.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su141912222</doi><orcidid>https://orcid.org/0000-0003-1308-1762</orcidid><orcidid>https://orcid.org/0000-0003-2862-4897</orcidid><orcidid>https://orcid.org/0000-0002-4997-5322</orcidid><orcidid>https://orcid.org/0000-0003-0499-7170</orcidid><orcidid>https://orcid.org/0000-0001-6288-6474</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-09, Vol.14 (19), p.12222
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2724321369
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial intelligence
Big Data
Blockchain
Computed tomography
Coronaviruses
COVID-19
COVID-19 vaccines
Data analysis
Datasets
Decision making
Deep learning
Disease detection
Health aspects
Health care
Image processing
Lung diseases
Machine learning
Medical imaging
Neural networks
Pandemics
Patients
Physicians
Preempting
Severe acute respiratory syndrome coronavirus 2
Signs and symptoms
Sustainability
title A Novel COVID-19 Detection Technique Using Deep Learning Based Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20COVID-19%20Detection%20Technique%20Using%20Deep%20Learning%20Based%20Approaches&rft.jtitle=Sustainability&rft.au=Al%20Shehri,%20Waleed&rft.date=2022-09-01&rft.volume=14&rft.issue=19&rft.spage=12222&rft.pages=12222-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su141912222&rft_dat=%3Cgale_proqu%3EA746960199%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724321369&rft_id=info:pmid/&rft_galeid=A746960199&rfr_iscdi=true