Sentinel-1 and Sentinel-2 Data to Detect Irrigation Events: Riaza Irrigation District (Spain) Case Study

This paper investigates the use of high resolution (~100 m) surface soil moisture (SSM) maps to detect irrigation occurrences, in time and space. The SSM maps have been derived from time series of Copernicus Sentinel-1 (S-1) and Sentinel-2 (S-2) observations. The analysis focused on the Riaza irriga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2022-10, Vol.14 (19), p.3046
Hauptverfasser: Balenzano, Anna, Satalino, Giuseppe, Lovergine, Francesco Paolo, D’Addabbo, Annarita, Palmisano, Davide, Grassi, Riccardo, Ozalp, Ozlem, Mattia, Francesco, Nafría García, David, Paredes Gómez, Vanessa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 3046
container_title Water (Basel)
container_volume 14
creator Balenzano, Anna
Satalino, Giuseppe
Lovergine, Francesco Paolo
D’Addabbo, Annarita
Palmisano, Davide
Grassi, Riccardo
Ozalp, Ozlem
Mattia, Francesco
Nafría García, David
Paredes Gómez, Vanessa
description This paper investigates the use of high resolution (~100 m) surface soil moisture (SSM) maps to detect irrigation occurrences, in time and space. The SSM maps have been derived from time series of Copernicus Sentinel-1 (S-1) and Sentinel-2 (S-2) observations. The analysis focused on the Riaza irrigation district in the Castilla y León region (Spain), where detailed information on land use, irrigation scheduling, water withdrawal, meteorology and parcel borders is available from 2017 to 2021. The well-documented data basis has supported a solid characterization of the sources of uncertainties affecting the use of SSM to map and monitor irrigation events. The main factors affecting the irrigation detection are meteo-climatic condition, crop type, water supply and spatial and temporal resolution of Earth observation data. Results indicate that approximately three-quarters of the fields irrigated within three days of the S-1 acquisition can be detected. The specific contribution of SSM to irrigation monitoring consists of (i) an early detection, well before vegetation indexes can even detect the presence of a crop, and (ii) the identification of the irrigation event in time, which remains unfeasible for vegetation indexes. Therefore, SSM can integrate vegetation indexes to resolve the irrigation occurrences in time and space.
doi_str_mv 10.3390/w14193046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2724300997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724300997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-6c0837550857d6700dca6a41c20d872d862107de47e092d63613e4298258cc913</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGoX_oOAG7sYvXlMHu6krVooCI6uh5CkmlJnxiS11F_vSKX0bO453I974SB0SeCGMQ23W8KJZsDFCRpQkKzgnJPTI3-ORimtoBfXSpUwQB-Vb3Jo_Log2DQOHyLFU5MNzi2e-uxtxvMYw7vJoW3w7Lun0h1-CebHHC-mIeUYevi66kxoxnhiksdV3rjdBTpbmnXyo_85RG8Ps9fJU7F4fpxP7heFpZrmQlhQTJYlqFI6IQGcNcJwYik4JalTghKQznPpQVMnmCDMc6oVLZW1mrAhutrf7WL7tfEp16t2E5v-ZU0l5QxAa9lT4z1lY5tS9Mu6i-HTxF1NoP7rsj50yX4BGNNjBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724300997</pqid></control><display><type>article</type><title>Sentinel-1 and Sentinel-2 Data to Detect Irrigation Events: Riaza Irrigation District (Spain) Case Study</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Balenzano, Anna ; Satalino, Giuseppe ; Lovergine, Francesco Paolo ; D’Addabbo, Annarita ; Palmisano, Davide ; Grassi, Riccardo ; Ozalp, Ozlem ; Mattia, Francesco ; Nafría García, David ; Paredes Gómez, Vanessa</creator><creatorcontrib>Balenzano, Anna ; Satalino, Giuseppe ; Lovergine, Francesco Paolo ; D’Addabbo, Annarita ; Palmisano, Davide ; Grassi, Riccardo ; Ozalp, Ozlem ; Mattia, Francesco ; Nafría García, David ; Paredes Gómez, Vanessa</creatorcontrib><description>This paper investigates the use of high resolution (~100 m) surface soil moisture (SSM) maps to detect irrigation occurrences, in time and space. The SSM maps have been derived from time series of Copernicus Sentinel-1 (S-1) and Sentinel-2 (S-2) observations. The analysis focused on the Riaza irrigation district in the Castilla y León region (Spain), where detailed information on land use, irrigation scheduling, water withdrawal, meteorology and parcel borders is available from 2017 to 2021. The well-documented data basis has supported a solid characterization of the sources of uncertainties affecting the use of SSM to map and monitor irrigation events. The main factors affecting the irrigation detection are meteo-climatic condition, crop type, water supply and spatial and temporal resolution of Earth observation data. Results indicate that approximately three-quarters of the fields irrigated within three days of the S-1 acquisition can be detected. The specific contribution of SSM to irrigation monitoring consists of (i) an early detection, well before vegetation indexes can even detect the presence of a crop, and (ii) the identification of the irrigation event in time, which remains unfeasible for vegetation indexes. Therefore, SSM can integrate vegetation indexes to resolve the irrigation occurrences in time and space.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w14193046</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agriculture ; Climatic conditions ; Common Agricultural Policy ; Crops ; Irrigation ; Irrigation scheduling ; Irrigation water ; Land use ; Meteorological satellites ; Meteorology ; Precipitation ; Soil moisture ; Soil surfaces ; Temporal resolution ; Time series ; Vegetation ; Water supply</subject><ispartof>Water (Basel), 2022-10, Vol.14 (19), p.3046</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-6c0837550857d6700dca6a41c20d872d862107de47e092d63613e4298258cc913</citedby><cites>FETCH-LOGICAL-c292t-6c0837550857d6700dca6a41c20d872d862107de47e092d63613e4298258cc913</cites><orcidid>0000-0002-8084-2122 ; 0000-0002-4473-2460 ; 0000-0002-9355-9035 ; 0000-0003-1566-5497 ; 0000-0002-7677-1923 ; 0000-0002-3058-5340 ; 0000-0003-2526-1330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Balenzano, Anna</creatorcontrib><creatorcontrib>Satalino, Giuseppe</creatorcontrib><creatorcontrib>Lovergine, Francesco Paolo</creatorcontrib><creatorcontrib>D’Addabbo, Annarita</creatorcontrib><creatorcontrib>Palmisano, Davide</creatorcontrib><creatorcontrib>Grassi, Riccardo</creatorcontrib><creatorcontrib>Ozalp, Ozlem</creatorcontrib><creatorcontrib>Mattia, Francesco</creatorcontrib><creatorcontrib>Nafría García, David</creatorcontrib><creatorcontrib>Paredes Gómez, Vanessa</creatorcontrib><title>Sentinel-1 and Sentinel-2 Data to Detect Irrigation Events: Riaza Irrigation District (Spain) Case Study</title><title>Water (Basel)</title><description>This paper investigates the use of high resolution (~100 m) surface soil moisture (SSM) maps to detect irrigation occurrences, in time and space. The SSM maps have been derived from time series of Copernicus Sentinel-1 (S-1) and Sentinel-2 (S-2) observations. The analysis focused on the Riaza irrigation district in the Castilla y León region (Spain), where detailed information on land use, irrigation scheduling, water withdrawal, meteorology and parcel borders is available from 2017 to 2021. The well-documented data basis has supported a solid characterization of the sources of uncertainties affecting the use of SSM to map and monitor irrigation events. The main factors affecting the irrigation detection are meteo-climatic condition, crop type, water supply and spatial and temporal resolution of Earth observation data. Results indicate that approximately three-quarters of the fields irrigated within three days of the S-1 acquisition can be detected. The specific contribution of SSM to irrigation monitoring consists of (i) an early detection, well before vegetation indexes can even detect the presence of a crop, and (ii) the identification of the irrigation event in time, which remains unfeasible for vegetation indexes. Therefore, SSM can integrate vegetation indexes to resolve the irrigation occurrences in time and space.</description><subject>Agriculture</subject><subject>Climatic conditions</subject><subject>Common Agricultural Policy</subject><subject>Crops</subject><subject>Irrigation</subject><subject>Irrigation scheduling</subject><subject>Irrigation water</subject><subject>Land use</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Precipitation</subject><subject>Soil moisture</subject><subject>Soil surfaces</subject><subject>Temporal resolution</subject><subject>Time series</subject><subject>Vegetation</subject><subject>Water supply</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtLAzEUhYMoWGoX_oOAG7sYvXlMHu6krVooCI6uh5CkmlJnxiS11F_vSKX0bO453I974SB0SeCGMQ23W8KJZsDFCRpQkKzgnJPTI3-ORimtoBfXSpUwQB-Vb3Jo_Log2DQOHyLFU5MNzi2e-uxtxvMYw7vJoW3w7Lun0h1-CebHHC-mIeUYevi66kxoxnhiksdV3rjdBTpbmnXyo_85RG8Ps9fJU7F4fpxP7heFpZrmQlhQTJYlqFI6IQGcNcJwYik4JalTghKQznPpQVMnmCDMc6oVLZW1mrAhutrf7WL7tfEp16t2E5v-ZU0l5QxAa9lT4z1lY5tS9Mu6i-HTxF1NoP7rsj50yX4BGNNjBQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Balenzano, Anna</creator><creator>Satalino, Giuseppe</creator><creator>Lovergine, Francesco Paolo</creator><creator>D’Addabbo, Annarita</creator><creator>Palmisano, Davide</creator><creator>Grassi, Riccardo</creator><creator>Ozalp, Ozlem</creator><creator>Mattia, Francesco</creator><creator>Nafría García, David</creator><creator>Paredes Gómez, Vanessa</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8084-2122</orcidid><orcidid>https://orcid.org/0000-0002-4473-2460</orcidid><orcidid>https://orcid.org/0000-0002-9355-9035</orcidid><orcidid>https://orcid.org/0000-0003-1566-5497</orcidid><orcidid>https://orcid.org/0000-0002-7677-1923</orcidid><orcidid>https://orcid.org/0000-0002-3058-5340</orcidid><orcidid>https://orcid.org/0000-0003-2526-1330</orcidid></search><sort><creationdate>20221001</creationdate><title>Sentinel-1 and Sentinel-2 Data to Detect Irrigation Events: Riaza Irrigation District (Spain) Case Study</title><author>Balenzano, Anna ; Satalino, Giuseppe ; Lovergine, Francesco Paolo ; D’Addabbo, Annarita ; Palmisano, Davide ; Grassi, Riccardo ; Ozalp, Ozlem ; Mattia, Francesco ; Nafría García, David ; Paredes Gómez, Vanessa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-6c0837550857d6700dca6a41c20d872d862107de47e092d63613e4298258cc913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Climatic conditions</topic><topic>Common Agricultural Policy</topic><topic>Crops</topic><topic>Irrigation</topic><topic>Irrigation scheduling</topic><topic>Irrigation water</topic><topic>Land use</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Precipitation</topic><topic>Soil moisture</topic><topic>Soil surfaces</topic><topic>Temporal resolution</topic><topic>Time series</topic><topic>Vegetation</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balenzano, Anna</creatorcontrib><creatorcontrib>Satalino, Giuseppe</creatorcontrib><creatorcontrib>Lovergine, Francesco Paolo</creatorcontrib><creatorcontrib>D’Addabbo, Annarita</creatorcontrib><creatorcontrib>Palmisano, Davide</creatorcontrib><creatorcontrib>Grassi, Riccardo</creatorcontrib><creatorcontrib>Ozalp, Ozlem</creatorcontrib><creatorcontrib>Mattia, Francesco</creatorcontrib><creatorcontrib>Nafría García, David</creatorcontrib><creatorcontrib>Paredes Gómez, Vanessa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balenzano, Anna</au><au>Satalino, Giuseppe</au><au>Lovergine, Francesco Paolo</au><au>D’Addabbo, Annarita</au><au>Palmisano, Davide</au><au>Grassi, Riccardo</au><au>Ozalp, Ozlem</au><au>Mattia, Francesco</au><au>Nafría García, David</au><au>Paredes Gómez, Vanessa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sentinel-1 and Sentinel-2 Data to Detect Irrigation Events: Riaza Irrigation District (Spain) Case Study</atitle><jtitle>Water (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>14</volume><issue>19</issue><spage>3046</spage><pages>3046-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>This paper investigates the use of high resolution (~100 m) surface soil moisture (SSM) maps to detect irrigation occurrences, in time and space. The SSM maps have been derived from time series of Copernicus Sentinel-1 (S-1) and Sentinel-2 (S-2) observations. The analysis focused on the Riaza irrigation district in the Castilla y León region (Spain), where detailed information on land use, irrigation scheduling, water withdrawal, meteorology and parcel borders is available from 2017 to 2021. The well-documented data basis has supported a solid characterization of the sources of uncertainties affecting the use of SSM to map and monitor irrigation events. The main factors affecting the irrigation detection are meteo-climatic condition, crop type, water supply and spatial and temporal resolution of Earth observation data. Results indicate that approximately three-quarters of the fields irrigated within three days of the S-1 acquisition can be detected. The specific contribution of SSM to irrigation monitoring consists of (i) an early detection, well before vegetation indexes can even detect the presence of a crop, and (ii) the identification of the irrigation event in time, which remains unfeasible for vegetation indexes. Therefore, SSM can integrate vegetation indexes to resolve the irrigation occurrences in time and space.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w14193046</doi><orcidid>https://orcid.org/0000-0002-8084-2122</orcidid><orcidid>https://orcid.org/0000-0002-4473-2460</orcidid><orcidid>https://orcid.org/0000-0002-9355-9035</orcidid><orcidid>https://orcid.org/0000-0003-1566-5497</orcidid><orcidid>https://orcid.org/0000-0002-7677-1923</orcidid><orcidid>https://orcid.org/0000-0002-3058-5340</orcidid><orcidid>https://orcid.org/0000-0003-2526-1330</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2022-10, Vol.14 (19), p.3046
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2724300997
source MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library
subjects Agriculture
Climatic conditions
Common Agricultural Policy
Crops
Irrigation
Irrigation scheduling
Irrigation water
Land use
Meteorological satellites
Meteorology
Precipitation
Soil moisture
Soil surfaces
Temporal resolution
Time series
Vegetation
Water supply
title Sentinel-1 and Sentinel-2 Data to Detect Irrigation Events: Riaza Irrigation District (Spain) Case Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sentinel-1%20and%20Sentinel-2%20Data%20to%20Detect%20Irrigation%20Events:%20Riaza%20Irrigation%20District%20(Spain)%20Case%20Study&rft.jtitle=Water%20(Basel)&rft.au=Balenzano,%20Anna&rft.date=2022-10-01&rft.volume=14&rft.issue=19&rft.spage=3046&rft.pages=3046-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w14193046&rft_dat=%3Cproquest_cross%3E2724300997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724300997&rft_id=info:pmid/&rfr_iscdi=true