Configurable Readout Error Mitigation in Quantum Workflows

Current quantum computers are still error-prone, with measurement errors being one of the factors limiting the scalability of quantum devices. To reduce their impact, a variety of readout error mitigation methods, mostly relying on classical post-processing, have been developed. However, the applica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-10, Vol.11 (19), p.2983
Hauptverfasser: Beisel, Martin, Barzen, Johanna, Leymann, Frank, Truger, Felix, Weder, Benjamin, Yussupov, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 2983
container_title Electronics (Basel)
container_volume 11
creator Beisel, Martin
Barzen, Johanna
Leymann, Frank
Truger, Felix
Weder, Benjamin
Yussupov, Vladimir
description Current quantum computers are still error-prone, with measurement errors being one of the factors limiting the scalability of quantum devices. To reduce their impact, a variety of readout error mitigation methods, mostly relying on classical post-processing, have been developed. However, the application of these methods is complicated by their heterogeneity and a lack of information regarding their functionality, configuration, and integration. To facilitate their use, we provide an overview of existing methods, and evaluate general and method-specific configuration options. Quantum applications comprise many classical pre- and post-processing tasks, including readout error mitigation. Automation can facilitate the execution of these often complex tasks, as their manual execution is time-consuming and error-prone. Workflow technology is a promising candidate for the orchestration of heterogeneous tasks, offering advantages such as reliability, robustness, and monitoring capabilities. In this paper, we present an approach to abstractly model quantum workflows comprising configurable readout error mitigation tasks. Based on the method configuration, these workflows can then be automatically refined into executable workflow models. To validate the feasibility of our approach, we provide a prototypical implementation and demonstrate it in a case study from the quantum humanities domain.
doi_str_mv 10.3390/electronics11192983
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2724231913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745603518</galeid><sourcerecordid>A745603518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9d76f12edb0cb0b1834e8845abb53ba3d146086d44a4fb6450f37b40d6b28fed3</originalsourceid><addsrcrecordid>eNptUE1LAzEQDaJgqf0FXhY8b00y2d2st1KqFSqiKB6XZJOU1G1SkyzivzdSDx6cOcwH783HQ-iS4DlAi6_1oPsUvLN9JIS0tOVwgiYUN22ZC3r6Jz9Hsxh3OFtLgAOeoJuld8ZuxyDkoItnLZQfU7EKwYfiwSa7Fcl6V1hXPI3CpXFfvPnwbgb_GS_QmRFD1LPfOEWvt6uX5brcPN7dLxebsoeapLJVTW0I1UriXmJJODDNOauElBVIAYqwGvNaMSaYkTWrsIFGMqxqSbnRCqbo6jj3EPzHqGPqdn4MLq_saEMZBZKfyaj5EbUVg-6sMz4F0WdXem9777Sxub9oWFVjqPIVUwRHQh98jEGb7hDsXoSvjuDuR9juH2HhG35JbjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724231913</pqid></control><display><type>article</type><title>Configurable Readout Error Mitigation in Quantum Workflows</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Beisel, Martin ; Barzen, Johanna ; Leymann, Frank ; Truger, Felix ; Weder, Benjamin ; Yussupov, Vladimir</creator><creatorcontrib>Beisel, Martin ; Barzen, Johanna ; Leymann, Frank ; Truger, Felix ; Weder, Benjamin ; Yussupov, Vladimir</creatorcontrib><description>Current quantum computers are still error-prone, with measurement errors being one of the factors limiting the scalability of quantum devices. To reduce their impact, a variety of readout error mitigation methods, mostly relying on classical post-processing, have been developed. However, the application of these methods is complicated by their heterogeneity and a lack of information regarding their functionality, configuration, and integration. To facilitate their use, we provide an overview of existing methods, and evaluate general and method-specific configuration options. Quantum applications comprise many classical pre- and post-processing tasks, including readout error mitigation. Automation can facilitate the execution of these often complex tasks, as their manual execution is time-consuming and error-prone. Workflow technology is a promising candidate for the orchestration of heterogeneous tasks, offering advantages such as reliability, robustness, and monitoring capabilities. In this paper, we present an approach to abstractly model quantum workflows comprising configurable readout error mitigation tasks. Based on the method configuration, these workflows can then be automatically refined into executable workflow models. To validate the feasibility of our approach, we provide a prototypical implementation and demonstrate it in a case study from the quantum humanities domain.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11192983</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Automation ; Case studies ; Circuits ; Configurations ; Error analysis ; Error analysis (Mathematics) ; Heterogeneity ; Humanities ; Methods ; Probability distribution ; Quantum computers ; Quantum computing ; Scalability ; Software ; Task complexity ; Workflow</subject><ispartof>Electronics (Basel), 2022-10, Vol.11 (19), p.2983</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-9d76f12edb0cb0b1834e8845abb53ba3d146086d44a4fb6450f37b40d6b28fed3</citedby><cites>FETCH-LOGICAL-c361t-9d76f12edb0cb0b1834e8845abb53ba3d146086d44a4fb6450f37b40d6b28fed3</cites><orcidid>0000-0003-2617-751X ; 0000-0002-6498-637X ; 0000-0001-8397-7973 ; 0000-0002-9123-259X ; 0000-0002-6761-6243 ; 0000-0001-6587-6431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Beisel, Martin</creatorcontrib><creatorcontrib>Barzen, Johanna</creatorcontrib><creatorcontrib>Leymann, Frank</creatorcontrib><creatorcontrib>Truger, Felix</creatorcontrib><creatorcontrib>Weder, Benjamin</creatorcontrib><creatorcontrib>Yussupov, Vladimir</creatorcontrib><title>Configurable Readout Error Mitigation in Quantum Workflows</title><title>Electronics (Basel)</title><description>Current quantum computers are still error-prone, with measurement errors being one of the factors limiting the scalability of quantum devices. To reduce their impact, a variety of readout error mitigation methods, mostly relying on classical post-processing, have been developed. However, the application of these methods is complicated by their heterogeneity and a lack of information regarding their functionality, configuration, and integration. To facilitate their use, we provide an overview of existing methods, and evaluate general and method-specific configuration options. Quantum applications comprise many classical pre- and post-processing tasks, including readout error mitigation. Automation can facilitate the execution of these often complex tasks, as their manual execution is time-consuming and error-prone. Workflow technology is a promising candidate for the orchestration of heterogeneous tasks, offering advantages such as reliability, robustness, and monitoring capabilities. In this paper, we present an approach to abstractly model quantum workflows comprising configurable readout error mitigation tasks. Based on the method configuration, these workflows can then be automatically refined into executable workflow models. To validate the feasibility of our approach, we provide a prototypical implementation and demonstrate it in a case study from the quantum humanities domain.</description><subject>Analysis</subject><subject>Automation</subject><subject>Case studies</subject><subject>Circuits</subject><subject>Configurations</subject><subject>Error analysis</subject><subject>Error analysis (Mathematics)</subject><subject>Heterogeneity</subject><subject>Humanities</subject><subject>Methods</subject><subject>Probability distribution</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Scalability</subject><subject>Software</subject><subject>Task complexity</subject><subject>Workflow</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUE1LAzEQDaJgqf0FXhY8b00y2d2st1KqFSqiKB6XZJOU1G1SkyzivzdSDx6cOcwH783HQ-iS4DlAi6_1oPsUvLN9JIS0tOVwgiYUN22ZC3r6Jz9Hsxh3OFtLgAOeoJuld8ZuxyDkoItnLZQfU7EKwYfiwSa7Fcl6V1hXPI3CpXFfvPnwbgb_GS_QmRFD1LPfOEWvt6uX5brcPN7dLxebsoeapLJVTW0I1UriXmJJODDNOauElBVIAYqwGvNaMSaYkTWrsIFGMqxqSbnRCqbo6jj3EPzHqGPqdn4MLq_saEMZBZKfyaj5EbUVg-6sMz4F0WdXem9777Sxub9oWFVjqPIVUwRHQh98jEGb7hDsXoSvjuDuR9juH2HhG35JbjE</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Beisel, Martin</creator><creator>Barzen, Johanna</creator><creator>Leymann, Frank</creator><creator>Truger, Felix</creator><creator>Weder, Benjamin</creator><creator>Yussupov, Vladimir</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2617-751X</orcidid><orcidid>https://orcid.org/0000-0002-6498-637X</orcidid><orcidid>https://orcid.org/0000-0001-8397-7973</orcidid><orcidid>https://orcid.org/0000-0002-9123-259X</orcidid><orcidid>https://orcid.org/0000-0002-6761-6243</orcidid><orcidid>https://orcid.org/0000-0001-6587-6431</orcidid></search><sort><creationdate>20221001</creationdate><title>Configurable Readout Error Mitigation in Quantum Workflows</title><author>Beisel, Martin ; Barzen, Johanna ; Leymann, Frank ; Truger, Felix ; Weder, Benjamin ; Yussupov, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9d76f12edb0cb0b1834e8845abb53ba3d146086d44a4fb6450f37b40d6b28fed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Automation</topic><topic>Case studies</topic><topic>Circuits</topic><topic>Configurations</topic><topic>Error analysis</topic><topic>Error analysis (Mathematics)</topic><topic>Heterogeneity</topic><topic>Humanities</topic><topic>Methods</topic><topic>Probability distribution</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Scalability</topic><topic>Software</topic><topic>Task complexity</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beisel, Martin</creatorcontrib><creatorcontrib>Barzen, Johanna</creatorcontrib><creatorcontrib>Leymann, Frank</creatorcontrib><creatorcontrib>Truger, Felix</creatorcontrib><creatorcontrib>Weder, Benjamin</creatorcontrib><creatorcontrib>Yussupov, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beisel, Martin</au><au>Barzen, Johanna</au><au>Leymann, Frank</au><au>Truger, Felix</au><au>Weder, Benjamin</au><au>Yussupov, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Configurable Readout Error Mitigation in Quantum Workflows</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>11</volume><issue>19</issue><spage>2983</spage><pages>2983-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Current quantum computers are still error-prone, with measurement errors being one of the factors limiting the scalability of quantum devices. To reduce their impact, a variety of readout error mitigation methods, mostly relying on classical post-processing, have been developed. However, the application of these methods is complicated by their heterogeneity and a lack of information regarding their functionality, configuration, and integration. To facilitate their use, we provide an overview of existing methods, and evaluate general and method-specific configuration options. Quantum applications comprise many classical pre- and post-processing tasks, including readout error mitigation. Automation can facilitate the execution of these often complex tasks, as their manual execution is time-consuming and error-prone. Workflow technology is a promising candidate for the orchestration of heterogeneous tasks, offering advantages such as reliability, robustness, and monitoring capabilities. In this paper, we present an approach to abstractly model quantum workflows comprising configurable readout error mitigation tasks. Based on the method configuration, these workflows can then be automatically refined into executable workflow models. To validate the feasibility of our approach, we provide a prototypical implementation and demonstrate it in a case study from the quantum humanities domain.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11192983</doi><orcidid>https://orcid.org/0000-0003-2617-751X</orcidid><orcidid>https://orcid.org/0000-0002-6498-637X</orcidid><orcidid>https://orcid.org/0000-0001-8397-7973</orcidid><orcidid>https://orcid.org/0000-0002-9123-259X</orcidid><orcidid>https://orcid.org/0000-0002-6761-6243</orcidid><orcidid>https://orcid.org/0000-0001-6587-6431</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-10, Vol.11 (19), p.2983
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2724231913
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Analysis
Automation
Case studies
Circuits
Configurations
Error analysis
Error analysis (Mathematics)
Heterogeneity
Humanities
Methods
Probability distribution
Quantum computers
Quantum computing
Scalability
Software
Task complexity
Workflow
title Configurable Readout Error Mitigation in Quantum Workflows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Configurable%20Readout%20Error%20Mitigation%20in%20Quantum%20Workflows&rft.jtitle=Electronics%20(Basel)&rft.au=Beisel,%20Martin&rft.date=2022-10-01&rft.volume=11&rft.issue=19&rft.spage=2983&rft.pages=2983-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11192983&rft_dat=%3Cgale_proqu%3EA745603518%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724231913&rft_id=info:pmid/&rft_galeid=A745603518&rfr_iscdi=true