Configurable Readout Error Mitigation in Quantum Workflows
Current quantum computers are still error-prone, with measurement errors being one of the factors limiting the scalability of quantum devices. To reduce their impact, a variety of readout error mitigation methods, mostly relying on classical post-processing, have been developed. However, the applica...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-10, Vol.11 (19), p.2983 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 2983 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Beisel, Martin Barzen, Johanna Leymann, Frank Truger, Felix Weder, Benjamin Yussupov, Vladimir |
description | Current quantum computers are still error-prone, with measurement errors being one of the factors limiting the scalability of quantum devices. To reduce their impact, a variety of readout error mitigation methods, mostly relying on classical post-processing, have been developed. However, the application of these methods is complicated by their heterogeneity and a lack of information regarding their functionality, configuration, and integration. To facilitate their use, we provide an overview of existing methods, and evaluate general and method-specific configuration options. Quantum applications comprise many classical pre- and post-processing tasks, including readout error mitigation. Automation can facilitate the execution of these often complex tasks, as their manual execution is time-consuming and error-prone. Workflow technology is a promising candidate for the orchestration of heterogeneous tasks, offering advantages such as reliability, robustness, and monitoring capabilities. In this paper, we present an approach to abstractly model quantum workflows comprising configurable readout error mitigation tasks. Based on the method configuration, these workflows can then be automatically refined into executable workflow models. To validate the feasibility of our approach, we provide a prototypical implementation and demonstrate it in a case study from the quantum humanities domain. |
doi_str_mv | 10.3390/electronics11192983 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2724231913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745603518</galeid><sourcerecordid>A745603518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9d76f12edb0cb0b1834e8845abb53ba3d146086d44a4fb6450f37b40d6b28fed3</originalsourceid><addsrcrecordid>eNptUE1LAzEQDaJgqf0FXhY8b00y2d2st1KqFSqiKB6XZJOU1G1SkyzivzdSDx6cOcwH783HQ-iS4DlAi6_1oPsUvLN9JIS0tOVwgiYUN22ZC3r6Jz9Hsxh3OFtLgAOeoJuld8ZuxyDkoItnLZQfU7EKwYfiwSa7Fcl6V1hXPI3CpXFfvPnwbgb_GS_QmRFD1LPfOEWvt6uX5brcPN7dLxebsoeapLJVTW0I1UriXmJJODDNOauElBVIAYqwGvNaMSaYkTWrsIFGMqxqSbnRCqbo6jj3EPzHqGPqdn4MLq_saEMZBZKfyaj5EbUVg-6sMz4F0WdXem9777Sxub9oWFVjqPIVUwRHQh98jEGb7hDsXoSvjuDuR9juH2HhG35JbjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724231913</pqid></control><display><type>article</type><title>Configurable Readout Error Mitigation in Quantum Workflows</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Beisel, Martin ; Barzen, Johanna ; Leymann, Frank ; Truger, Felix ; Weder, Benjamin ; Yussupov, Vladimir</creator><creatorcontrib>Beisel, Martin ; Barzen, Johanna ; Leymann, Frank ; Truger, Felix ; Weder, Benjamin ; Yussupov, Vladimir</creatorcontrib><description>Current quantum computers are still error-prone, with measurement errors being one of the factors limiting the scalability of quantum devices. To reduce their impact, a variety of readout error mitigation methods, mostly relying on classical post-processing, have been developed. However, the application of these methods is complicated by their heterogeneity and a lack of information regarding their functionality, configuration, and integration. To facilitate their use, we provide an overview of existing methods, and evaluate general and method-specific configuration options. Quantum applications comprise many classical pre- and post-processing tasks, including readout error mitigation. Automation can facilitate the execution of these often complex tasks, as their manual execution is time-consuming and error-prone. Workflow technology is a promising candidate for the orchestration of heterogeneous tasks, offering advantages such as reliability, robustness, and monitoring capabilities. In this paper, we present an approach to abstractly model quantum workflows comprising configurable readout error mitigation tasks. Based on the method configuration, these workflows can then be automatically refined into executable workflow models. To validate the feasibility of our approach, we provide a prototypical implementation and demonstrate it in a case study from the quantum humanities domain.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11192983</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Automation ; Case studies ; Circuits ; Configurations ; Error analysis ; Error analysis (Mathematics) ; Heterogeneity ; Humanities ; Methods ; Probability distribution ; Quantum computers ; Quantum computing ; Scalability ; Software ; Task complexity ; Workflow</subject><ispartof>Electronics (Basel), 2022-10, Vol.11 (19), p.2983</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-9d76f12edb0cb0b1834e8845abb53ba3d146086d44a4fb6450f37b40d6b28fed3</citedby><cites>FETCH-LOGICAL-c361t-9d76f12edb0cb0b1834e8845abb53ba3d146086d44a4fb6450f37b40d6b28fed3</cites><orcidid>0000-0003-2617-751X ; 0000-0002-6498-637X ; 0000-0001-8397-7973 ; 0000-0002-9123-259X ; 0000-0002-6761-6243 ; 0000-0001-6587-6431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Beisel, Martin</creatorcontrib><creatorcontrib>Barzen, Johanna</creatorcontrib><creatorcontrib>Leymann, Frank</creatorcontrib><creatorcontrib>Truger, Felix</creatorcontrib><creatorcontrib>Weder, Benjamin</creatorcontrib><creatorcontrib>Yussupov, Vladimir</creatorcontrib><title>Configurable Readout Error Mitigation in Quantum Workflows</title><title>Electronics (Basel)</title><description>Current quantum computers are still error-prone, with measurement errors being one of the factors limiting the scalability of quantum devices. To reduce their impact, a variety of readout error mitigation methods, mostly relying on classical post-processing, have been developed. However, the application of these methods is complicated by their heterogeneity and a lack of information regarding their functionality, configuration, and integration. To facilitate their use, we provide an overview of existing methods, and evaluate general and method-specific configuration options. Quantum applications comprise many classical pre- and post-processing tasks, including readout error mitigation. Automation can facilitate the execution of these often complex tasks, as their manual execution is time-consuming and error-prone. Workflow technology is a promising candidate for the orchestration of heterogeneous tasks, offering advantages such as reliability, robustness, and monitoring capabilities. In this paper, we present an approach to abstractly model quantum workflows comprising configurable readout error mitigation tasks. Based on the method configuration, these workflows can then be automatically refined into executable workflow models. To validate the feasibility of our approach, we provide a prototypical implementation and demonstrate it in a case study from the quantum humanities domain.</description><subject>Analysis</subject><subject>Automation</subject><subject>Case studies</subject><subject>Circuits</subject><subject>Configurations</subject><subject>Error analysis</subject><subject>Error analysis (Mathematics)</subject><subject>Heterogeneity</subject><subject>Humanities</subject><subject>Methods</subject><subject>Probability distribution</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Scalability</subject><subject>Software</subject><subject>Task complexity</subject><subject>Workflow</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUE1LAzEQDaJgqf0FXhY8b00y2d2st1KqFSqiKB6XZJOU1G1SkyzivzdSDx6cOcwH783HQ-iS4DlAi6_1oPsUvLN9JIS0tOVwgiYUN22ZC3r6Jz9Hsxh3OFtLgAOeoJuld8ZuxyDkoItnLZQfU7EKwYfiwSa7Fcl6V1hXPI3CpXFfvPnwbgb_GS_QmRFD1LPfOEWvt6uX5brcPN7dLxebsoeapLJVTW0I1UriXmJJODDNOauElBVIAYqwGvNaMSaYkTWrsIFGMqxqSbnRCqbo6jj3EPzHqGPqdn4MLq_saEMZBZKfyaj5EbUVg-6sMz4F0WdXem9777Sxub9oWFVjqPIVUwRHQh98jEGb7hDsXoSvjuDuR9juH2HhG35JbjE</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Beisel, Martin</creator><creator>Barzen, Johanna</creator><creator>Leymann, Frank</creator><creator>Truger, Felix</creator><creator>Weder, Benjamin</creator><creator>Yussupov, Vladimir</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2617-751X</orcidid><orcidid>https://orcid.org/0000-0002-6498-637X</orcidid><orcidid>https://orcid.org/0000-0001-8397-7973</orcidid><orcidid>https://orcid.org/0000-0002-9123-259X</orcidid><orcidid>https://orcid.org/0000-0002-6761-6243</orcidid><orcidid>https://orcid.org/0000-0001-6587-6431</orcidid></search><sort><creationdate>20221001</creationdate><title>Configurable Readout Error Mitigation in Quantum Workflows</title><author>Beisel, Martin ; Barzen, Johanna ; Leymann, Frank ; Truger, Felix ; Weder, Benjamin ; Yussupov, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9d76f12edb0cb0b1834e8845abb53ba3d146086d44a4fb6450f37b40d6b28fed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Automation</topic><topic>Case studies</topic><topic>Circuits</topic><topic>Configurations</topic><topic>Error analysis</topic><topic>Error analysis (Mathematics)</topic><topic>Heterogeneity</topic><topic>Humanities</topic><topic>Methods</topic><topic>Probability distribution</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Scalability</topic><topic>Software</topic><topic>Task complexity</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beisel, Martin</creatorcontrib><creatorcontrib>Barzen, Johanna</creatorcontrib><creatorcontrib>Leymann, Frank</creatorcontrib><creatorcontrib>Truger, Felix</creatorcontrib><creatorcontrib>Weder, Benjamin</creatorcontrib><creatorcontrib>Yussupov, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beisel, Martin</au><au>Barzen, Johanna</au><au>Leymann, Frank</au><au>Truger, Felix</au><au>Weder, Benjamin</au><au>Yussupov, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Configurable Readout Error Mitigation in Quantum Workflows</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>11</volume><issue>19</issue><spage>2983</spage><pages>2983-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Current quantum computers are still error-prone, with measurement errors being one of the factors limiting the scalability of quantum devices. To reduce their impact, a variety of readout error mitigation methods, mostly relying on classical post-processing, have been developed. However, the application of these methods is complicated by their heterogeneity and a lack of information regarding their functionality, configuration, and integration. To facilitate their use, we provide an overview of existing methods, and evaluate general and method-specific configuration options. Quantum applications comprise many classical pre- and post-processing tasks, including readout error mitigation. Automation can facilitate the execution of these often complex tasks, as their manual execution is time-consuming and error-prone. Workflow technology is a promising candidate for the orchestration of heterogeneous tasks, offering advantages such as reliability, robustness, and monitoring capabilities. In this paper, we present an approach to abstractly model quantum workflows comprising configurable readout error mitigation tasks. Based on the method configuration, these workflows can then be automatically refined into executable workflow models. To validate the feasibility of our approach, we provide a prototypical implementation and demonstrate it in a case study from the quantum humanities domain.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11192983</doi><orcidid>https://orcid.org/0000-0003-2617-751X</orcidid><orcidid>https://orcid.org/0000-0002-6498-637X</orcidid><orcidid>https://orcid.org/0000-0001-8397-7973</orcidid><orcidid>https://orcid.org/0000-0002-9123-259X</orcidid><orcidid>https://orcid.org/0000-0002-6761-6243</orcidid><orcidid>https://orcid.org/0000-0001-6587-6431</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-10, Vol.11 (19), p.2983 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2724231913 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Analysis Automation Case studies Circuits Configurations Error analysis Error analysis (Mathematics) Heterogeneity Humanities Methods Probability distribution Quantum computers Quantum computing Scalability Software Task complexity Workflow |
title | Configurable Readout Error Mitigation in Quantum Workflows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Configurable%20Readout%20Error%20Mitigation%20in%20Quantum%20Workflows&rft.jtitle=Electronics%20(Basel)&rft.au=Beisel,%20Martin&rft.date=2022-10-01&rft.volume=11&rft.issue=19&rft.spage=2983&rft.pages=2983-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11192983&rft_dat=%3Cgale_proqu%3EA745603518%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724231913&rft_id=info:pmid/&rft_galeid=A745603518&rfr_iscdi=true |