Wireless Communication Channel Scenarios: Machine-Learning-Based Identification and Performance Enhancement
Wireless communication channel scenario classification is crucial for new modern wireless technologies. Reducing the time consumed by the data preprocessing phase for such identification is also essential, especially for multiple-scenario transitions in 6G. Machine learning (ML) has been used for sc...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-10, Vol.11 (19), p.3253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 3253 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Zaki, Amira Métwalli, Ahmed Aly, Moustafa H. Badawi, Waleed K. |
description | Wireless communication channel scenario classification is crucial for new modern wireless technologies. Reducing the time consumed by the data preprocessing phase for such identification is also essential, especially for multiple-scenario transitions in 6G. Machine learning (ML) has been used for scenario identification tasks. In this paper, the least absolute shrinkage and selection operator (LASSO) is used instead of ElasticNet in order to reduce the computational time of data preprocessing for ML. Moreover, the computational time and performance of different ML models are evaluated based on a regularization technique. The obtained results reveal that the LASSO operator achieves the same feature selection performance as ElasticNet; however, the LASSO operator consumes less computational time. The achieved run time of LASSO is 0.33 s, while the ElasticNet corresponding value is 0.67 s. The identification for each specific class for K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and k-Means and Gaussian Mixture Model (GMM) is evaluated using Receiver Operating Characteristics (ROC) curves and Area Under the Curve (AUC) scores. The KNN algorithm has the highest class-average AUC score at 0.998, compared to SVM, k-Means, and GMM with values of 0.994, 0.983, and 0.989, respectively. The GMM is the fastest algorithm among others, having the lowest classification time at 0.087 s, compared to SVM, k-Means, and GMM with values of 0.155, 0.26, and 0.087, respectively. |
doi_str_mv | 10.3390/electronics11193253 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2724231871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745597703</galeid><sourcerecordid>A745597703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e2ba2a20cfb1e3f695fafee426cf798f9065a57a44ec22e1e03c5461d509d4843</originalsourceid><addsrcrecordid>eNptUU1Lw0AQDaJgqf0FXgKeU_cjyWa91VC1UFFQ8Rimm9l2a7Jbd9OD_94tVfDgzOENw_s4vCS5pGTKuSTX2KEavLNGBUqp5KzgJ8mIESEzySQ7_XOfJ5MQtiSOpLziZJR8vBsfDUJIa9f3-2gCg3E2rTdgLXbpi0IL3rhwkz6C2hiL2RLBW2PX2S0EbNNFi3Yw-lcItk2f0Wvne7AK07ndHLCPpIvkTEMXcPKD4-Ttbv5aP2TLp_tFPVtmikk6ZMhWwIARpVcUuS5loUEj5qxUWshKS1IWUAjIc1SMIUXCVZGXtC2IbPMq5-Pk6ui78-5zj2Fotm7vbYxsmGA547QSNLKmR9YaOmyM1W7woOK22BvlLGoT_zORF4UUgvAo4EeB8i4Ej7rZedOD_2ooaQ5NNP80wb8B8IKAaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724231871</pqid></control><display><type>article</type><title>Wireless Communication Channel Scenarios: Machine-Learning-Based Identification and Performance Enhancement</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Zaki, Amira ; Métwalli, Ahmed ; Aly, Moustafa H. ; Badawi, Waleed K.</creator><creatorcontrib>Zaki, Amira ; Métwalli, Ahmed ; Aly, Moustafa H. ; Badawi, Waleed K.</creatorcontrib><description>Wireless communication channel scenario classification is crucial for new modern wireless technologies. Reducing the time consumed by the data preprocessing phase for such identification is also essential, especially for multiple-scenario transitions in 6G. Machine learning (ML) has been used for scenario identification tasks. In this paper, the least absolute shrinkage and selection operator (LASSO) is used instead of ElasticNet in order to reduce the computational time of data preprocessing for ML. Moreover, the computational time and performance of different ML models are evaluated based on a regularization technique. The obtained results reveal that the LASSO operator achieves the same feature selection performance as ElasticNet; however, the LASSO operator consumes less computational time. The achieved run time of LASSO is 0.33 s, while the ElasticNet corresponding value is 0.67 s. The identification for each specific class for K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and k-Means and Gaussian Mixture Model (GMM) is evaluated using Receiver Operating Characteristics (ROC) curves and Area Under the Curve (AUC) scores. The KNN algorithm has the highest class-average AUC score at 0.998, compared to SVM, k-Means, and GMM with values of 0.994, 0.983, and 0.989, respectively. The GMM is the fastest algorithm among others, having the lowest classification time at 0.087 s, compared to SVM, k-Means, and GMM with values of 0.155, 0.26, and 0.087, respectively.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11193253</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Classification ; Communications systems ; Computational efficiency ; Computing time ; Datasets ; Efficiency ; Electronic data processing ; K-nearest neighbors algorithm ; Machine learning ; Methods ; Mobile communication systems ; Neural networks ; Performance enhancement ; Preprocessing ; Probabilistic models ; Regularization ; Rural areas ; Satellites ; Support vector machines ; Wireless communication systems ; Wireless communications</subject><ispartof>Electronics (Basel), 2022-10, Vol.11 (19), p.3253</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e2ba2a20cfb1e3f695fafee426cf798f9065a57a44ec22e1e03c5461d509d4843</citedby><cites>FETCH-LOGICAL-c291t-e2ba2a20cfb1e3f695fafee426cf798f9065a57a44ec22e1e03c5461d509d4843</cites><orcidid>0000-0002-9438-8207 ; 0000-0003-1966-3755 ; 0000-0002-1191-5797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zaki, Amira</creatorcontrib><creatorcontrib>Métwalli, Ahmed</creatorcontrib><creatorcontrib>Aly, Moustafa H.</creatorcontrib><creatorcontrib>Badawi, Waleed K.</creatorcontrib><title>Wireless Communication Channel Scenarios: Machine-Learning-Based Identification and Performance Enhancement</title><title>Electronics (Basel)</title><description>Wireless communication channel scenario classification is crucial for new modern wireless technologies. Reducing the time consumed by the data preprocessing phase for such identification is also essential, especially for multiple-scenario transitions in 6G. Machine learning (ML) has been used for scenario identification tasks. In this paper, the least absolute shrinkage and selection operator (LASSO) is used instead of ElasticNet in order to reduce the computational time of data preprocessing for ML. Moreover, the computational time and performance of different ML models are evaluated based on a regularization technique. The obtained results reveal that the LASSO operator achieves the same feature selection performance as ElasticNet; however, the LASSO operator consumes less computational time. The achieved run time of LASSO is 0.33 s, while the ElasticNet corresponding value is 0.67 s. The identification for each specific class for K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and k-Means and Gaussian Mixture Model (GMM) is evaluated using Receiver Operating Characteristics (ROC) curves and Area Under the Curve (AUC) scores. The KNN algorithm has the highest class-average AUC score at 0.998, compared to SVM, k-Means, and GMM with values of 0.994, 0.983, and 0.989, respectively. The GMM is the fastest algorithm among others, having the lowest classification time at 0.087 s, compared to SVM, k-Means, and GMM with values of 0.155, 0.26, and 0.087, respectively.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Communications systems</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Datasets</subject><subject>Efficiency</subject><subject>Electronic data processing</subject><subject>K-nearest neighbors algorithm</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Mobile communication systems</subject><subject>Neural networks</subject><subject>Performance enhancement</subject><subject>Preprocessing</subject><subject>Probabilistic models</subject><subject>Regularization</subject><subject>Rural areas</subject><subject>Satellites</subject><subject>Support vector machines</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUU1Lw0AQDaJgqf0FXgKeU_cjyWa91VC1UFFQ8Rimm9l2a7Jbd9OD_94tVfDgzOENw_s4vCS5pGTKuSTX2KEavLNGBUqp5KzgJ8mIESEzySQ7_XOfJ5MQtiSOpLziZJR8vBsfDUJIa9f3-2gCg3E2rTdgLXbpi0IL3rhwkz6C2hiL2RLBW2PX2S0EbNNFi3Yw-lcItk2f0Wvne7AK07ndHLCPpIvkTEMXcPKD4-Ttbv5aP2TLp_tFPVtmikk6ZMhWwIARpVcUuS5loUEj5qxUWshKS1IWUAjIc1SMIUXCVZGXtC2IbPMq5-Pk6ui78-5zj2Fotm7vbYxsmGA547QSNLKmR9YaOmyM1W7woOK22BvlLGoT_zORF4UUgvAo4EeB8i4Ej7rZedOD_2ooaQ5NNP80wb8B8IKAaA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zaki, Amira</creator><creator>Métwalli, Ahmed</creator><creator>Aly, Moustafa H.</creator><creator>Badawi, Waleed K.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9438-8207</orcidid><orcidid>https://orcid.org/0000-0003-1966-3755</orcidid><orcidid>https://orcid.org/0000-0002-1191-5797</orcidid></search><sort><creationdate>20221001</creationdate><title>Wireless Communication Channel Scenarios: Machine-Learning-Based Identification and Performance Enhancement</title><author>Zaki, Amira ; Métwalli, Ahmed ; Aly, Moustafa H. ; Badawi, Waleed K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e2ba2a20cfb1e3f695fafee426cf798f9065a57a44ec22e1e03c5461d509d4843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Communications systems</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Datasets</topic><topic>Efficiency</topic><topic>Electronic data processing</topic><topic>K-nearest neighbors algorithm</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Mobile communication systems</topic><topic>Neural networks</topic><topic>Performance enhancement</topic><topic>Preprocessing</topic><topic>Probabilistic models</topic><topic>Regularization</topic><topic>Rural areas</topic><topic>Satellites</topic><topic>Support vector machines</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaki, Amira</creatorcontrib><creatorcontrib>Métwalli, Ahmed</creatorcontrib><creatorcontrib>Aly, Moustafa H.</creatorcontrib><creatorcontrib>Badawi, Waleed K.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaki, Amira</au><au>Métwalli, Ahmed</au><au>Aly, Moustafa H.</au><au>Badawi, Waleed K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wireless Communication Channel Scenarios: Machine-Learning-Based Identification and Performance Enhancement</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>11</volume><issue>19</issue><spage>3253</spage><pages>3253-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Wireless communication channel scenario classification is crucial for new modern wireless technologies. Reducing the time consumed by the data preprocessing phase for such identification is also essential, especially for multiple-scenario transitions in 6G. Machine learning (ML) has been used for scenario identification tasks. In this paper, the least absolute shrinkage and selection operator (LASSO) is used instead of ElasticNet in order to reduce the computational time of data preprocessing for ML. Moreover, the computational time and performance of different ML models are evaluated based on a regularization technique. The obtained results reveal that the LASSO operator achieves the same feature selection performance as ElasticNet; however, the LASSO operator consumes less computational time. The achieved run time of LASSO is 0.33 s, while the ElasticNet corresponding value is 0.67 s. The identification for each specific class for K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and k-Means and Gaussian Mixture Model (GMM) is evaluated using Receiver Operating Characteristics (ROC) curves and Area Under the Curve (AUC) scores. The KNN algorithm has the highest class-average AUC score at 0.998, compared to SVM, k-Means, and GMM with values of 0.994, 0.983, and 0.989, respectively. The GMM is the fastest algorithm among others, having the lowest classification time at 0.087 s, compared to SVM, k-Means, and GMM with values of 0.155, 0.26, and 0.087, respectively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11193253</doi><orcidid>https://orcid.org/0000-0002-9438-8207</orcidid><orcidid>https://orcid.org/0000-0003-1966-3755</orcidid><orcidid>https://orcid.org/0000-0002-1191-5797</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-10, Vol.11 (19), p.3253 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2724231871 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Algorithms Classification Communications systems Computational efficiency Computing time Datasets Efficiency Electronic data processing K-nearest neighbors algorithm Machine learning Methods Mobile communication systems Neural networks Performance enhancement Preprocessing Probabilistic models Regularization Rural areas Satellites Support vector machines Wireless communication systems Wireless communications |
title | Wireless Communication Channel Scenarios: Machine-Learning-Based Identification and Performance Enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wireless%20Communication%20Channel%20Scenarios:%20Machine-Learning-Based%20Identification%20and%20Performance%20Enhancement&rft.jtitle=Electronics%20(Basel)&rft.au=Zaki,%20Amira&rft.date=2022-10-01&rft.volume=11&rft.issue=19&rft.spage=3253&rft.pages=3253-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11193253&rft_dat=%3Cgale_proqu%3EA745597703%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724231871&rft_id=info:pmid/&rft_galeid=A745597703&rfr_iscdi=true |