Priority-Aware Resource Management for Adaptive Service Function Chaining in Real-Time Intelligent IoT Services
The growth of the Internet of Things (IoT) in various mission-critical applications generates service heterogeneity with different priority labels. A set of virtual network function (VNF) orders represents service function chaining (SFC) for a particular service to robustly execute in a network func...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-10, Vol.11 (19), p.2976 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 2976 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Tam, Prohim Math, Sa Kim, Seokhoon |
description | The growth of the Internet of Things (IoT) in various mission-critical applications generates service heterogeneity with different priority labels. A set of virtual network function (VNF) orders represents service function chaining (SFC) for a particular service to robustly execute in a network function virtualization (NFV)-enabled environment. In IoT networks, the configuration of adaptive SFC has emerged to ensure optimality and elasticity of resource expenditure. In this paper, priority-aware resource management for adaptive SFC is provided by modeling the configuration of real-time IoT service requests. The problem models of the primary features that impact the optimization of configuration times and resource utilization are studied. The proposed approaches query the promising embedded deep reinforcement learning engine in the management layer (e.g., orchestrator) to observe the state features of VNFs, apply the action on instantiating and modifying new/created VNFs, and evaluate the average transmission delays for end-to-end IoT services. In the embedded SFC procedures, the agent formulates the function approximator for scoring the existing chain performance metrics. The testbed simulation was conducted in SDN/NFV topologies and captured the average of rewards, delays, delivery ratio, and throughput as −48.6666, 10.9766 ms, 99.9221%, and 615.8441 Mbps, which outperformed other reference approaches, following parameter configuration in this environment. |
doi_str_mv | 10.3390/electronics11192976 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2724231439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745603511</galeid><sourcerecordid>A745603511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3fc87b78d069fbde09f99fa132ea30d494fc6e172244a8a8ab92219f907bdecb3</originalsourceid><addsrcrecordid>eNptkV1LwzAUhoMoOOZ-gTcFrzvz0TXNZRlOBxNF53VJ05Oa0SUzySb790am4IV5L3I-3ifhcBC6JnjKmMC3MICK3lmjAiFEUMHLMzSimIs8JfT8T3yJJiFscDqCsIrhEXLP3jhv4jGvP6WH7AWC23sF2aO0soct2Jhp57O6k7toDpC9gj-Y1F_srYrG2Wz-Lo01ts-MTbQc8rXZQra0EYbB9N_80q1_sXCFLrQcAkx-7jF6W9yt5w_56ul-Oa9XuWIliTnTquItrzpcCt12gIUWQkvCKEiGu0IUWpVAOKVFIaukVlBKkgnz5FYtG6Ob07s77z72EGKzSXPZ9GVDOS0oIwUTyTU9uXo5QGOsdtFLldTB1ihnQZtUr3kxKzGbEZIAdgKUdyF40M3Om630x4bg5nsbzT_bYF-cy4F5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724231439</pqid></control><display><type>article</type><title>Priority-Aware Resource Management for Adaptive Service Function Chaining in Real-Time Intelligent IoT Services</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tam, Prohim ; Math, Sa ; Kim, Seokhoon</creator><creatorcontrib>Tam, Prohim ; Math, Sa ; Kim, Seokhoon</creatorcontrib><description>The growth of the Internet of Things (IoT) in various mission-critical applications generates service heterogeneity with different priority labels. A set of virtual network function (VNF) orders represents service function chaining (SFC) for a particular service to robustly execute in a network function virtualization (NFV)-enabled environment. In IoT networks, the configuration of adaptive SFC has emerged to ensure optimality and elasticity of resource expenditure. In this paper, priority-aware resource management for adaptive SFC is provided by modeling the configuration of real-time IoT service requests. The problem models of the primary features that impact the optimization of configuration times and resource utilization are studied. The proposed approaches query the promising embedded deep reinforcement learning engine in the management layer (e.g., orchestrator) to observe the state features of VNFs, apply the action on instantiating and modifying new/created VNFs, and evaluate the average transmission delays for end-to-end IoT services. In the embedded SFC procedures, the agent formulates the function approximator for scoring the existing chain performance metrics. The testbed simulation was conducted in SDN/NFV topologies and captured the average of rewards, delays, delivery ratio, and throughput as −48.6666, 10.9766 ms, 99.9221%, and 615.8441 Mbps, which outperformed other reference approaches, following parameter configuration in this environment.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11192976</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Chaining ; Classification ; Configurations ; Costs ; Decision making ; Deep learning ; Heterogeneity ; Integer programming ; Internet of Things ; Markov analysis ; Methods ; Optimization ; Performance measurement ; Real time ; Reinforcement learning (Machine learning) ; Resource allocation ; Resource management ; Resource utilization ; Topology ; Virtual networks ; Virtualization</subject><ispartof>Electronics (Basel), 2022-10, Vol.11 (19), p.2976</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-3fc87b78d069fbde09f99fa132ea30d494fc6e172244a8a8ab92219f907bdecb3</citedby><cites>FETCH-LOGICAL-c361t-3fc87b78d069fbde09f99fa132ea30d494fc6e172244a8a8ab92219f907bdecb3</cites><orcidid>0000-0002-3842-7689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tam, Prohim</creatorcontrib><creatorcontrib>Math, Sa</creatorcontrib><creatorcontrib>Kim, Seokhoon</creatorcontrib><title>Priority-Aware Resource Management for Adaptive Service Function Chaining in Real-Time Intelligent IoT Services</title><title>Electronics (Basel)</title><description>The growth of the Internet of Things (IoT) in various mission-critical applications generates service heterogeneity with different priority labels. A set of virtual network function (VNF) orders represents service function chaining (SFC) for a particular service to robustly execute in a network function virtualization (NFV)-enabled environment. In IoT networks, the configuration of adaptive SFC has emerged to ensure optimality and elasticity of resource expenditure. In this paper, priority-aware resource management for adaptive SFC is provided by modeling the configuration of real-time IoT service requests. The problem models of the primary features that impact the optimization of configuration times and resource utilization are studied. The proposed approaches query the promising embedded deep reinforcement learning engine in the management layer (e.g., orchestrator) to observe the state features of VNFs, apply the action on instantiating and modifying new/created VNFs, and evaluate the average transmission delays for end-to-end IoT services. In the embedded SFC procedures, the agent formulates the function approximator for scoring the existing chain performance metrics. The testbed simulation was conducted in SDN/NFV topologies and captured the average of rewards, delays, delivery ratio, and throughput as −48.6666, 10.9766 ms, 99.9221%, and 615.8441 Mbps, which outperformed other reference approaches, following parameter configuration in this environment.</description><subject>Chaining</subject><subject>Classification</subject><subject>Configurations</subject><subject>Costs</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Heterogeneity</subject><subject>Integer programming</subject><subject>Internet of Things</subject><subject>Markov analysis</subject><subject>Methods</subject><subject>Optimization</subject><subject>Performance measurement</subject><subject>Real time</subject><subject>Reinforcement learning (Machine learning)</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Resource utilization</subject><subject>Topology</subject><subject>Virtual networks</subject><subject>Virtualization</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkV1LwzAUhoMoOOZ-gTcFrzvz0TXNZRlOBxNF53VJ05Oa0SUzySb790am4IV5L3I-3ifhcBC6JnjKmMC3MICK3lmjAiFEUMHLMzSimIs8JfT8T3yJJiFscDqCsIrhEXLP3jhv4jGvP6WH7AWC23sF2aO0soct2Jhp57O6k7toDpC9gj-Y1F_srYrG2Wz-Lo01ts-MTbQc8rXZQra0EYbB9N_80q1_sXCFLrQcAkx-7jF6W9yt5w_56ul-Oa9XuWIliTnTquItrzpcCt12gIUWQkvCKEiGu0IUWpVAOKVFIaukVlBKkgnz5FYtG6Ob07s77z72EGKzSXPZ9GVDOS0oIwUTyTU9uXo5QGOsdtFLldTB1ihnQZtUr3kxKzGbEZIAdgKUdyF40M3Om630x4bg5nsbzT_bYF-cy4F5</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Tam, Prohim</creator><creator>Math, Sa</creator><creator>Kim, Seokhoon</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3842-7689</orcidid></search><sort><creationdate>20221001</creationdate><title>Priority-Aware Resource Management for Adaptive Service Function Chaining in Real-Time Intelligent IoT Services</title><author>Tam, Prohim ; Math, Sa ; Kim, Seokhoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3fc87b78d069fbde09f99fa132ea30d494fc6e172244a8a8ab92219f907bdecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chaining</topic><topic>Classification</topic><topic>Configurations</topic><topic>Costs</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Heterogeneity</topic><topic>Integer programming</topic><topic>Internet of Things</topic><topic>Markov analysis</topic><topic>Methods</topic><topic>Optimization</topic><topic>Performance measurement</topic><topic>Real time</topic><topic>Reinforcement learning (Machine learning)</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Resource utilization</topic><topic>Topology</topic><topic>Virtual networks</topic><topic>Virtualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tam, Prohim</creatorcontrib><creatorcontrib>Math, Sa</creatorcontrib><creatorcontrib>Kim, Seokhoon</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tam, Prohim</au><au>Math, Sa</au><au>Kim, Seokhoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Priority-Aware Resource Management for Adaptive Service Function Chaining in Real-Time Intelligent IoT Services</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>11</volume><issue>19</issue><spage>2976</spage><pages>2976-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The growth of the Internet of Things (IoT) in various mission-critical applications generates service heterogeneity with different priority labels. A set of virtual network function (VNF) orders represents service function chaining (SFC) for a particular service to robustly execute in a network function virtualization (NFV)-enabled environment. In IoT networks, the configuration of adaptive SFC has emerged to ensure optimality and elasticity of resource expenditure. In this paper, priority-aware resource management for adaptive SFC is provided by modeling the configuration of real-time IoT service requests. The problem models of the primary features that impact the optimization of configuration times and resource utilization are studied. The proposed approaches query the promising embedded deep reinforcement learning engine in the management layer (e.g., orchestrator) to observe the state features of VNFs, apply the action on instantiating and modifying new/created VNFs, and evaluate the average transmission delays for end-to-end IoT services. In the embedded SFC procedures, the agent formulates the function approximator for scoring the existing chain performance metrics. The testbed simulation was conducted in SDN/NFV topologies and captured the average of rewards, delays, delivery ratio, and throughput as −48.6666, 10.9766 ms, 99.9221%, and 615.8441 Mbps, which outperformed other reference approaches, following parameter configuration in this environment.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11192976</doi><orcidid>https://orcid.org/0000-0002-3842-7689</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-10, Vol.11 (19), p.2976 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2724231439 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Chaining Classification Configurations Costs Decision making Deep learning Heterogeneity Integer programming Internet of Things Markov analysis Methods Optimization Performance measurement Real time Reinforcement learning (Machine learning) Resource allocation Resource management Resource utilization Topology Virtual networks Virtualization |
title | Priority-Aware Resource Management for Adaptive Service Function Chaining in Real-Time Intelligent IoT Services |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Priority-Aware%20Resource%20Management%20for%20Adaptive%20Service%20Function%20Chaining%20in%20Real-Time%20Intelligent%20IoT%20Services&rft.jtitle=Electronics%20(Basel)&rft.au=Tam,%20Prohim&rft.date=2022-10-01&rft.volume=11&rft.issue=19&rft.spage=2976&rft.pages=2976-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11192976&rft_dat=%3Cgale_proqu%3EA745603511%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724231439&rft_id=info:pmid/&rft_galeid=A745603511&rfr_iscdi=true |