Recent advances in non‐precious Ni‐based promising catalysts for water splitting application
Summary The creation of hydrogen and oxygen from water can be a paramount way to produce clean fuel through Earth‐abundant and non‐precious photoelectrochemical (solar to hydrogen production) and electrocatalysis processes. Since two decades, nickel (Ni)‐based electrocatalysts are being extensively...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2022-10, Vol.46 (13), p.17829-17847 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17847 |
---|---|
container_issue | 13 |
container_start_page | 17829 |
container_title | International journal of energy research |
container_volume | 46 |
creator | Bulakhe, Suraj Shinde, Nanasaheb Kim, Jeom‐Soo Mane, Rajaram S. Deokate, Ramesh |
description | Summary
The creation of hydrogen and oxygen from water can be a paramount way to produce clean fuel through Earth‐abundant and non‐precious photoelectrochemical (solar to hydrogen production) and electrocatalysis processes. Since two decades, nickel (Ni)‐based electrocatalysts are being extensively applied as bifunctional electrocatalysts. Here, recent advances of Ni‐based catalysts in electrochemistry for water splitting application through oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) processes with evaluation parameters like dependency of the current density on the applied potential, overpotentials, and Tafel plots, etc., are brushed in brief. Various synthesis methods have also been reported with structural variations to identify the final active structure. Furthermore, based on previously published work on both OER and HER activities, disputes and outlook perspectives of Ni‐based electrolytes in the water splitting process are highlighted in succinct.
The review presents the basic understanding ofcatalysis towards the OER. We have first explored essential parametrs needs for the OER catalysis to acheive the great effeiciency. Furthe rexplained the numerous Ni‐basedmaterials as electrocatalysis. |
doi_str_mv | 10.1002/er.8458 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2724203521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724203521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3228-59e68f11a7f6327817de19011fc4ad53c1746ab4368443cec8f060495ea679943</originalsourceid><addsrcrecordid>eNp10M1KAzEQAOAgCtYqvkLAgwfZmr_dbI5S6g8UhaLQW0yzs5Kyza7J1tKbj-Az-iSm1qunmWE-ZoZB6JySESWEXUMYlSIvD9CAEqUySsX8EA0IL3imiJwfo5MYl4SkHpUD9DoDC77Hpvow3kLEzmPf-u_Pry6Ade064keXqoWJUOEutCsXnX_D1vSm2cY-4roNeGN6CDh2jev7Xdd0KU3Etf4UHdWmiXD2F4fo5XbyPL7Ppk93D-ObaWY5Y2WWKyjKmlIj64IzWVJZAVWE0toKU-XcUikKsxC8KIXgFmxZk4IIlYMppFKCD9HFfm668X0NsdfLdh18WqmZZIIRnjOa1OVe2dDGGKDWXXArE7aaEr17n4agd-9L8movN66B7X9MT2a_-gfOKHIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724203521</pqid></control><display><type>article</type><title>Recent advances in non‐precious Ni‐based promising catalysts for water splitting application</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bulakhe, Suraj ; Shinde, Nanasaheb ; Kim, Jeom‐Soo ; Mane, Rajaram S. ; Deokate, Ramesh</creator><creatorcontrib>Bulakhe, Suraj ; Shinde, Nanasaheb ; Kim, Jeom‐Soo ; Mane, Rajaram S. ; Deokate, Ramesh</creatorcontrib><description>Summary
The creation of hydrogen and oxygen from water can be a paramount way to produce clean fuel through Earth‐abundant and non‐precious photoelectrochemical (solar to hydrogen production) and electrocatalysis processes. Since two decades, nickel (Ni)‐based electrocatalysts are being extensively applied as bifunctional electrocatalysts. Here, recent advances of Ni‐based catalysts in electrochemistry for water splitting application through oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) processes with evaluation parameters like dependency of the current density on the applied potential, overpotentials, and Tafel plots, etc., are brushed in brief. Various synthesis methods have also been reported with structural variations to identify the final active structure. Furthermore, based on previously published work on both OER and HER activities, disputes and outlook perspectives of Ni‐based electrolytes in the water splitting process are highlighted in succinct.
The review presents the basic understanding ofcatalysis towards the OER. We have first explored essential parametrs needs for the OER catalysis to acheive the great effeiciency. Furthe rexplained the numerous Ni‐basedmaterials as electrocatalysis.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.8458</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Catalysts ; Clean fuels ; Current density ; Electrocatalysts ; Electrochemistry ; Electrolytes ; Evolution ; HER ; Hydrogen ; Hydrogen evolution reactions ; Hydrogen production ; Nickel ; OER ; Oxygen ; Oxygen evolution reactions ; Process parameters ; Splitting ; transition metal‐based catalysts ; Water splitting</subject><ispartof>International journal of energy research, 2022-10, Vol.46 (13), p.17829-17847</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3228-59e68f11a7f6327817de19011fc4ad53c1746ab4368443cec8f060495ea679943</citedby><cites>FETCH-LOGICAL-c3228-59e68f11a7f6327817de19011fc4ad53c1746ab4368443cec8f060495ea679943</cites><orcidid>0000-0002-9624-7985 ; 0000-0002-9539-5900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.8458$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.8458$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Bulakhe, Suraj</creatorcontrib><creatorcontrib>Shinde, Nanasaheb</creatorcontrib><creatorcontrib>Kim, Jeom‐Soo</creatorcontrib><creatorcontrib>Mane, Rajaram S.</creatorcontrib><creatorcontrib>Deokate, Ramesh</creatorcontrib><title>Recent advances in non‐precious Ni‐based promising catalysts for water splitting application</title><title>International journal of energy research</title><description>Summary
The creation of hydrogen and oxygen from water can be a paramount way to produce clean fuel through Earth‐abundant and non‐precious photoelectrochemical (solar to hydrogen production) and electrocatalysis processes. Since two decades, nickel (Ni)‐based electrocatalysts are being extensively applied as bifunctional electrocatalysts. Here, recent advances of Ni‐based catalysts in electrochemistry for water splitting application through oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) processes with evaluation parameters like dependency of the current density on the applied potential, overpotentials, and Tafel plots, etc., are brushed in brief. Various synthesis methods have also been reported with structural variations to identify the final active structure. Furthermore, based on previously published work on both OER and HER activities, disputes and outlook perspectives of Ni‐based electrolytes in the water splitting process are highlighted in succinct.
The review presents the basic understanding ofcatalysis towards the OER. We have first explored essential parametrs needs for the OER catalysis to acheive the great effeiciency. Furthe rexplained the numerous Ni‐basedmaterials as electrocatalysis.</description><subject>Catalysts</subject><subject>Clean fuels</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Evolution</subject><subject>HER</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Nickel</subject><subject>OER</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Process parameters</subject><subject>Splitting</subject><subject>transition metal‐based catalysts</subject><subject>Water splitting</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQAOAgCtYqvkLAgwfZmr_dbI5S6g8UhaLQW0yzs5Kyza7J1tKbj-Az-iSm1qunmWE-ZoZB6JySESWEXUMYlSIvD9CAEqUySsX8EA0IL3imiJwfo5MYl4SkHpUD9DoDC77Hpvow3kLEzmPf-u_Pry6Ade064keXqoWJUOEutCsXnX_D1vSm2cY-4roNeGN6CDh2jev7Xdd0KU3Etf4UHdWmiXD2F4fo5XbyPL7Ppk93D-ObaWY5Y2WWKyjKmlIj64IzWVJZAVWE0toKU-XcUikKsxC8KIXgFmxZk4IIlYMppFKCD9HFfm668X0NsdfLdh18WqmZZIIRnjOa1OVe2dDGGKDWXXArE7aaEr17n4agd-9L8movN66B7X9MT2a_-gfOKHIs</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Bulakhe, Suraj</creator><creator>Shinde, Nanasaheb</creator><creator>Kim, Jeom‐Soo</creator><creator>Mane, Rajaram S.</creator><creator>Deokate, Ramesh</creator><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9624-7985</orcidid><orcidid>https://orcid.org/0000-0002-9539-5900</orcidid></search><sort><creationdate>20221025</creationdate><title>Recent advances in non‐precious Ni‐based promising catalysts for water splitting application</title><author>Bulakhe, Suraj ; Shinde, Nanasaheb ; Kim, Jeom‐Soo ; Mane, Rajaram S. ; Deokate, Ramesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3228-59e68f11a7f6327817de19011fc4ad53c1746ab4368443cec8f060495ea679943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Clean fuels</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Evolution</topic><topic>HER</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Nickel</topic><topic>OER</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Process parameters</topic><topic>Splitting</topic><topic>transition metal‐based catalysts</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bulakhe, Suraj</creatorcontrib><creatorcontrib>Shinde, Nanasaheb</creatorcontrib><creatorcontrib>Kim, Jeom‐Soo</creatorcontrib><creatorcontrib>Mane, Rajaram S.</creatorcontrib><creatorcontrib>Deokate, Ramesh</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bulakhe, Suraj</au><au>Shinde, Nanasaheb</au><au>Kim, Jeom‐Soo</au><au>Mane, Rajaram S.</au><au>Deokate, Ramesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in non‐precious Ni‐based promising catalysts for water splitting application</atitle><jtitle>International journal of energy research</jtitle><date>2022-10-25</date><risdate>2022</risdate><volume>46</volume><issue>13</issue><spage>17829</spage><epage>17847</epage><pages>17829-17847</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
The creation of hydrogen and oxygen from water can be a paramount way to produce clean fuel through Earth‐abundant and non‐precious photoelectrochemical (solar to hydrogen production) and electrocatalysis processes. Since two decades, nickel (Ni)‐based electrocatalysts are being extensively applied as bifunctional electrocatalysts. Here, recent advances of Ni‐based catalysts in electrochemistry for water splitting application through oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) processes with evaluation parameters like dependency of the current density on the applied potential, overpotentials, and Tafel plots, etc., are brushed in brief. Various synthesis methods have also been reported with structural variations to identify the final active structure. Furthermore, based on previously published work on both OER and HER activities, disputes and outlook perspectives of Ni‐based electrolytes in the water splitting process are highlighted in succinct.
The review presents the basic understanding ofcatalysis towards the OER. We have first explored essential parametrs needs for the OER catalysis to acheive the great effeiciency. Furthe rexplained the numerous Ni‐basedmaterials as electrocatalysis.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/er.8458</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9624-7985</orcidid><orcidid>https://orcid.org/0000-0002-9539-5900</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2022-10, Vol.46 (13), p.17829-17847 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2724203521 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysts Clean fuels Current density Electrocatalysts Electrochemistry Electrolytes Evolution HER Hydrogen Hydrogen evolution reactions Hydrogen production Nickel OER Oxygen Oxygen evolution reactions Process parameters Splitting transition metal‐based catalysts Water splitting |
title | Recent advances in non‐precious Ni‐based promising catalysts for water splitting application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A28%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20non%E2%80%90precious%20Ni%E2%80%90based%20promising%20catalysts%20for%20water%20splitting%20application&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Bulakhe,%20Suraj&rft.date=2022-10-25&rft.volume=46&rft.issue=13&rft.spage=17829&rft.epage=17847&rft.pages=17829-17847&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.8458&rft_dat=%3Cproquest_cross%3E2724203521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724203521&rft_id=info:pmid/&rfr_iscdi=true |