AdaBias: An Optimization Method With Bias Correction for Differential Privacy Protection

A continuous increase in privacy attacks has caused the research and application of differential privacy (DP) to gradually increase. We can improve the efficiency of the DP model by Optimizing its parameters significantly. Inspired by the performance of various optimization methods for differential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.107010-107021
Hauptverfasser: Zhao, Xuanyu, Hu, Tao, Li, Jun, Mao, Chunxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107021
container_issue
container_start_page 107010
container_title IEEE access
container_volume 10
creator Zhao, Xuanyu
Hu, Tao
Li, Jun
Mao, Chunxia
description A continuous increase in privacy attacks has caused the research and application of differential privacy (DP) to gradually increase. We can improve the efficiency of the DP model by Optimizing its parameters significantly. Inspired by the performance of various optimization methods for differential privacy, this paper proposes an improved RDP-AdaBound optimization method with bias correction, which is called "AdaBias", to increase the performance of Rényi differential privacy (RDP). The bias correction is used to realize the learning rate and speed up the convergence by upper and lower bound functions. We evaluate our method on the three datasets by training two different privacy model. We further compare three traditional optimization algorithms, namely, RDP-SGD, RDP-Adagrad, and RDP-Adam. And we use AdaBias to verify the performance of privacy protection on the COVID-19 dataset. Experimental results show that the new variant better implements learning rate adjustment to accommodate updates of noisy gradients. As a result, it can achieve higher accuracy and lower losses with a lower privacy budget, thereby better protecting data privacy.
doi_str_mv 10.1109/ACCESS.2022.3212031
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2723901459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9910170</ieee_id><doaj_id>oai_doaj_org_article_730de466edb64acebed49571a322e314</doaj_id><sourcerecordid>2723901459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-29ed4c599cdfb7803221fa2418db698011bc42e7d7bb82b9ca17aafd01ae08f73</originalsourceid><addsrcrecordid>eNpNUUtLAzEQXkRBUX-BlwXPrZlku9l4q-sTFAUVvYXZZKIptanZVNBfb-qKOJcZJt9jyFcUB8DGAEwdTdv27P5-zBnnY8GBMwEbxQ6HWo3ERNSb_-btYr_vZyxXk1cTuVM8Ty2eeOyPy-mivF0m_-a_MPmwKG8ovQZbPvn0Wq4RZRtiJPPz5kIsT71zFGmRPM7Lu-g_0HzmHtKA2Su2HM572v_tu8Xj-dlDezm6vr24aqfXIyNApBFXZCszUcpY18mGCc7BIa-gsV2tGgbQmYqTtLLrGt4pgyARnWWAxBonxW5xNejagDO9jP4N46cO6PXPIsQXjTF5MyctBbNU1TVl6QoNddk6fwJgNiUBVdY6HLSWMbyvqE96FlZxkc_XXHKhGFQTlVFiQJkY-j6S-3MFpteJ6CERvU5E_yaSWQcDyxPRH0MpYCCZ-Ab3robm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723901459</pqid></control><display><type>article</type><title>AdaBias: An Optimization Method With Bias Correction for Differential Privacy Protection</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Zhao, Xuanyu ; Hu, Tao ; Li, Jun ; Mao, Chunxia</creator><creatorcontrib>Zhao, Xuanyu ; Hu, Tao ; Li, Jun ; Mao, Chunxia</creatorcontrib><description>A continuous increase in privacy attacks has caused the research and application of differential privacy (DP) to gradually increase. We can improve the efficiency of the DP model by Optimizing its parameters significantly. Inspired by the performance of various optimization methods for differential privacy, this paper proposes an improved RDP-AdaBound optimization method with bias correction, which is called "AdaBias", to increase the performance of Rényi differential privacy (RDP). The bias correction is used to realize the learning rate and speed up the convergence by upper and lower bound functions. We evaluate our method on the three datasets by training two different privacy model. We further compare three traditional optimization algorithms, namely, RDP-SGD, RDP-Adagrad, and RDP-Adam. And we use AdaBias to verify the performance of privacy protection on the COVID-19 dataset. Experimental results show that the new variant better implements learning rate adjustment to accommodate updates of noisy gradients. As a result, it can achieve higher accuracy and lower losses with a lower privacy budget, thereby better protecting data privacy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3212031</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Algorithms ; Bias ; Convergence ; Datasets ; Deep learning ; Differential privacy ; Heuristic algorithms ; High-speed networks ; Learning ; Lower bounds ; Optimization ; optimization algorithm ; Privacy</subject><ispartof>IEEE access, 2022, Vol.10, p.107010-107021</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c313t-29ed4c599cdfb7803221fa2418db698011bc42e7d7bb82b9ca17aafd01ae08f73</cites><orcidid>0000-0002-6586-231X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9910170$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhao, Xuanyu</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Mao, Chunxia</creatorcontrib><title>AdaBias: An Optimization Method With Bias Correction for Differential Privacy Protection</title><title>IEEE access</title><addtitle>Access</addtitle><description>A continuous increase in privacy attacks has caused the research and application of differential privacy (DP) to gradually increase. We can improve the efficiency of the DP model by Optimizing its parameters significantly. Inspired by the performance of various optimization methods for differential privacy, this paper proposes an improved RDP-AdaBound optimization method with bias correction, which is called "AdaBias", to increase the performance of Rényi differential privacy (RDP). The bias correction is used to realize the learning rate and speed up the convergence by upper and lower bound functions. We evaluate our method on the three datasets by training two different privacy model. We further compare three traditional optimization algorithms, namely, RDP-SGD, RDP-Adagrad, and RDP-Adam. And we use AdaBias to verify the performance of privacy protection on the COVID-19 dataset. Experimental results show that the new variant better implements learning rate adjustment to accommodate updates of noisy gradients. As a result, it can achieve higher accuracy and lower losses with a lower privacy budget, thereby better protecting data privacy.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Bias</subject><subject>Convergence</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Differential privacy</subject><subject>Heuristic algorithms</subject><subject>High-speed networks</subject><subject>Learning</subject><subject>Lower bounds</subject><subject>Optimization</subject><subject>optimization algorithm</subject><subject>Privacy</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLAzEQXkRBUX-BlwXPrZlku9l4q-sTFAUVvYXZZKIptanZVNBfb-qKOJcZJt9jyFcUB8DGAEwdTdv27P5-zBnnY8GBMwEbxQ6HWo3ERNSb_-btYr_vZyxXk1cTuVM8Ty2eeOyPy-mivF0m_-a_MPmwKG8ovQZbPvn0Wq4RZRtiJPPz5kIsT71zFGmRPM7Lu-g_0HzmHtKA2Su2HM572v_tu8Xj-dlDezm6vr24aqfXIyNApBFXZCszUcpY18mGCc7BIa-gsV2tGgbQmYqTtLLrGt4pgyARnWWAxBonxW5xNejagDO9jP4N46cO6PXPIsQXjTF5MyctBbNU1TVl6QoNddk6fwJgNiUBVdY6HLSWMbyvqE96FlZxkc_XXHKhGFQTlVFiQJkY-j6S-3MFpteJ6CERvU5E_yaSWQcDyxPRH0MpYCCZ-Ab3robm</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhao, Xuanyu</creator><creator>Hu, Tao</creator><creator>Li, Jun</creator><creator>Mao, Chunxia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6586-231X</orcidid></search><sort><creationdate>2022</creationdate><title>AdaBias: An Optimization Method With Bias Correction for Differential Privacy Protection</title><author>Zhao, Xuanyu ; Hu, Tao ; Li, Jun ; Mao, Chunxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-29ed4c599cdfb7803221fa2418db698011bc42e7d7bb82b9ca17aafd01ae08f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Bias</topic><topic>Convergence</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Differential privacy</topic><topic>Heuristic algorithms</topic><topic>High-speed networks</topic><topic>Learning</topic><topic>Lower bounds</topic><topic>Optimization</topic><topic>optimization algorithm</topic><topic>Privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xuanyu</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Mao, Chunxia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xuanyu</au><au>Hu, Tao</au><au>Li, Jun</au><au>Mao, Chunxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AdaBias: An Optimization Method With Bias Correction for Differential Privacy Protection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>107010</spage><epage>107021</epage><pages>107010-107021</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A continuous increase in privacy attacks has caused the research and application of differential privacy (DP) to gradually increase. We can improve the efficiency of the DP model by Optimizing its parameters significantly. Inspired by the performance of various optimization methods for differential privacy, this paper proposes an improved RDP-AdaBound optimization method with bias correction, which is called "AdaBias", to increase the performance of Rényi differential privacy (RDP). The bias correction is used to realize the learning rate and speed up the convergence by upper and lower bound functions. We evaluate our method on the three datasets by training two different privacy model. We further compare three traditional optimization algorithms, namely, RDP-SGD, RDP-Adagrad, and RDP-Adam. And we use AdaBias to verify the performance of privacy protection on the COVID-19 dataset. Experimental results show that the new variant better implements learning rate adjustment to accommodate updates of noisy gradients. As a result, it can achieve higher accuracy and lower losses with a lower privacy budget, thereby better protecting data privacy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3212031</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6586-231X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.107010-107021
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2723901459
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Adaptation models
Algorithms
Bias
Convergence
Datasets
Deep learning
Differential privacy
Heuristic algorithms
High-speed networks
Learning
Lower bounds
Optimization
optimization algorithm
Privacy
title AdaBias: An Optimization Method With Bias Correction for Differential Privacy Protection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AdaBias:%20An%20Optimization%20Method%20With%20Bias%20Correction%20for%20Differential%20Privacy%20Protection&rft.jtitle=IEEE%20access&rft.au=Zhao,%20Xuanyu&rft.date=2022&rft.volume=10&rft.spage=107010&rft.epage=107021&rft.pages=107010-107021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3212031&rft_dat=%3Cproquest_doaj_%3E2723901459%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723901459&rft_id=info:pmid/&rft_ieee_id=9910170&rft_doaj_id=oai_doaj_org_article_730de466edb64acebed49571a322e314&rfr_iscdi=true