AdaBias: An Optimization Method With Bias Correction for Differential Privacy Protection
A continuous increase in privacy attacks has caused the research and application of differential privacy (DP) to gradually increase. We can improve the efficiency of the DP model by Optimizing its parameters significantly. Inspired by the performance of various optimization methods for differential...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.107010-107021 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 107021 |
---|---|
container_issue | |
container_start_page | 107010 |
container_title | IEEE access |
container_volume | 10 |
creator | Zhao, Xuanyu Hu, Tao Li, Jun Mao, Chunxia |
description | A continuous increase in privacy attacks has caused the research and application of differential privacy (DP) to gradually increase. We can improve the efficiency of the DP model by Optimizing its parameters significantly. Inspired by the performance of various optimization methods for differential privacy, this paper proposes an improved RDP-AdaBound optimization method with bias correction, which is called "AdaBias", to increase the performance of Rényi differential privacy (RDP). The bias correction is used to realize the learning rate and speed up the convergence by upper and lower bound functions. We evaluate our method on the three datasets by training two different privacy model. We further compare three traditional optimization algorithms, namely, RDP-SGD, RDP-Adagrad, and RDP-Adam. And we use AdaBias to verify the performance of privacy protection on the COVID-19 dataset. Experimental results show that the new variant better implements learning rate adjustment to accommodate updates of noisy gradients. As a result, it can achieve higher accuracy and lower losses with a lower privacy budget, thereby better protecting data privacy. |
doi_str_mv | 10.1109/ACCESS.2022.3212031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2723901459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9910170</ieee_id><doaj_id>oai_doaj_org_article_730de466edb64acebed49571a322e314</doaj_id><sourcerecordid>2723901459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-29ed4c599cdfb7803221fa2418db698011bc42e7d7bb82b9ca17aafd01ae08f73</originalsourceid><addsrcrecordid>eNpNUUtLAzEQXkRBUX-BlwXPrZlku9l4q-sTFAUVvYXZZKIptanZVNBfb-qKOJcZJt9jyFcUB8DGAEwdTdv27P5-zBnnY8GBMwEbxQ6HWo3ERNSb_-btYr_vZyxXk1cTuVM8Ty2eeOyPy-mivF0m_-a_MPmwKG8ovQZbPvn0Wq4RZRtiJPPz5kIsT71zFGmRPM7Lu-g_0HzmHtKA2Su2HM572v_tu8Xj-dlDezm6vr24aqfXIyNApBFXZCszUcpY18mGCc7BIa-gsV2tGgbQmYqTtLLrGt4pgyARnWWAxBonxW5xNejagDO9jP4N46cO6PXPIsQXjTF5MyctBbNU1TVl6QoNddk6fwJgNiUBVdY6HLSWMbyvqE96FlZxkc_XXHKhGFQTlVFiQJkY-j6S-3MFpteJ6CERvU5E_yaSWQcDyxPRH0MpYCCZ-Ab3robm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723901459</pqid></control><display><type>article</type><title>AdaBias: An Optimization Method With Bias Correction for Differential Privacy Protection</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Zhao, Xuanyu ; Hu, Tao ; Li, Jun ; Mao, Chunxia</creator><creatorcontrib>Zhao, Xuanyu ; Hu, Tao ; Li, Jun ; Mao, Chunxia</creatorcontrib><description>A continuous increase in privacy attacks has caused the research and application of differential privacy (DP) to gradually increase. We can improve the efficiency of the DP model by Optimizing its parameters significantly. Inspired by the performance of various optimization methods for differential privacy, this paper proposes an improved RDP-AdaBound optimization method with bias correction, which is called "AdaBias", to increase the performance of Rényi differential privacy (RDP). The bias correction is used to realize the learning rate and speed up the convergence by upper and lower bound functions. We evaluate our method on the three datasets by training two different privacy model. We further compare three traditional optimization algorithms, namely, RDP-SGD, RDP-Adagrad, and RDP-Adam. And we use AdaBias to verify the performance of privacy protection on the COVID-19 dataset. Experimental results show that the new variant better implements learning rate adjustment to accommodate updates of noisy gradients. As a result, it can achieve higher accuracy and lower losses with a lower privacy budget, thereby better protecting data privacy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3212031</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Algorithms ; Bias ; Convergence ; Datasets ; Deep learning ; Differential privacy ; Heuristic algorithms ; High-speed networks ; Learning ; Lower bounds ; Optimization ; optimization algorithm ; Privacy</subject><ispartof>IEEE access, 2022, Vol.10, p.107010-107021</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c313t-29ed4c599cdfb7803221fa2418db698011bc42e7d7bb82b9ca17aafd01ae08f73</cites><orcidid>0000-0002-6586-231X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9910170$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhao, Xuanyu</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Mao, Chunxia</creatorcontrib><title>AdaBias: An Optimization Method With Bias Correction for Differential Privacy Protection</title><title>IEEE access</title><addtitle>Access</addtitle><description>A continuous increase in privacy attacks has caused the research and application of differential privacy (DP) to gradually increase. We can improve the efficiency of the DP model by Optimizing its parameters significantly. Inspired by the performance of various optimization methods for differential privacy, this paper proposes an improved RDP-AdaBound optimization method with bias correction, which is called "AdaBias", to increase the performance of Rényi differential privacy (RDP). The bias correction is used to realize the learning rate and speed up the convergence by upper and lower bound functions. We evaluate our method on the three datasets by training two different privacy model. We further compare three traditional optimization algorithms, namely, RDP-SGD, RDP-Adagrad, and RDP-Adam. And we use AdaBias to verify the performance of privacy protection on the COVID-19 dataset. Experimental results show that the new variant better implements learning rate adjustment to accommodate updates of noisy gradients. As a result, it can achieve higher accuracy and lower losses with a lower privacy budget, thereby better protecting data privacy.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Bias</subject><subject>Convergence</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Differential privacy</subject><subject>Heuristic algorithms</subject><subject>High-speed networks</subject><subject>Learning</subject><subject>Lower bounds</subject><subject>Optimization</subject><subject>optimization algorithm</subject><subject>Privacy</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLAzEQXkRBUX-BlwXPrZlku9l4q-sTFAUVvYXZZKIptanZVNBfb-qKOJcZJt9jyFcUB8DGAEwdTdv27P5-zBnnY8GBMwEbxQ6HWo3ERNSb_-btYr_vZyxXk1cTuVM8Ty2eeOyPy-mivF0m_-a_MPmwKG8ovQZbPvn0Wq4RZRtiJPPz5kIsT71zFGmRPM7Lu-g_0HzmHtKA2Su2HM572v_tu8Xj-dlDezm6vr24aqfXIyNApBFXZCszUcpY18mGCc7BIa-gsV2tGgbQmYqTtLLrGt4pgyARnWWAxBonxW5xNejagDO9jP4N46cO6PXPIsQXjTF5MyctBbNU1TVl6QoNddk6fwJgNiUBVdY6HLSWMbyvqE96FlZxkc_XXHKhGFQTlVFiQJkY-j6S-3MFpteJ6CERvU5E_yaSWQcDyxPRH0MpYCCZ-Ab3robm</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhao, Xuanyu</creator><creator>Hu, Tao</creator><creator>Li, Jun</creator><creator>Mao, Chunxia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6586-231X</orcidid></search><sort><creationdate>2022</creationdate><title>AdaBias: An Optimization Method With Bias Correction for Differential Privacy Protection</title><author>Zhao, Xuanyu ; Hu, Tao ; Li, Jun ; Mao, Chunxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-29ed4c599cdfb7803221fa2418db698011bc42e7d7bb82b9ca17aafd01ae08f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Bias</topic><topic>Convergence</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Differential privacy</topic><topic>Heuristic algorithms</topic><topic>High-speed networks</topic><topic>Learning</topic><topic>Lower bounds</topic><topic>Optimization</topic><topic>optimization algorithm</topic><topic>Privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xuanyu</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Mao, Chunxia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xuanyu</au><au>Hu, Tao</au><au>Li, Jun</au><au>Mao, Chunxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AdaBias: An Optimization Method With Bias Correction for Differential Privacy Protection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>107010</spage><epage>107021</epage><pages>107010-107021</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A continuous increase in privacy attacks has caused the research and application of differential privacy (DP) to gradually increase. We can improve the efficiency of the DP model by Optimizing its parameters significantly. Inspired by the performance of various optimization methods for differential privacy, this paper proposes an improved RDP-AdaBound optimization method with bias correction, which is called "AdaBias", to increase the performance of Rényi differential privacy (RDP). The bias correction is used to realize the learning rate and speed up the convergence by upper and lower bound functions. We evaluate our method on the three datasets by training two different privacy model. We further compare three traditional optimization algorithms, namely, RDP-SGD, RDP-Adagrad, and RDP-Adam. And we use AdaBias to verify the performance of privacy protection on the COVID-19 dataset. Experimental results show that the new variant better implements learning rate adjustment to accommodate updates of noisy gradients. As a result, it can achieve higher accuracy and lower losses with a lower privacy budget, thereby better protecting data privacy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3212031</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6586-231X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.107010-107021 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2723901459 |
source | DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Adaptation models Algorithms Bias Convergence Datasets Deep learning Differential privacy Heuristic algorithms High-speed networks Learning Lower bounds Optimization optimization algorithm Privacy |
title | AdaBias: An Optimization Method With Bias Correction for Differential Privacy Protection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AdaBias:%20An%20Optimization%20Method%20With%20Bias%20Correction%20for%20Differential%20Privacy%20Protection&rft.jtitle=IEEE%20access&rft.au=Zhao,%20Xuanyu&rft.date=2022&rft.volume=10&rft.spage=107010&rft.epage=107021&rft.pages=107010-107021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3212031&rft_dat=%3Cproquest_doaj_%3E2723901459%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723901459&rft_id=info:pmid/&rft_ieee_id=9910170&rft_doaj_id=oai_doaj_org_article_730de466edb64acebed49571a322e314&rfr_iscdi=true |