Awareness on Present and Future Trajectory of Vehicle Using Multiple Hypotheses in the Mixed Traffic of Intersection

In the transition period, autonomous vehicles are mixed with unconnected traffic occupants, such as non-autonomous vehicles and pedestrians, resulting in a major hurdle toward autonomy in urban areas, especially at intersections. In this context, the cooperative-intelligent transportation system (C-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-10, Vol.23 (10), p.17690-17703
Hauptverfasser: Hwang, Yunhyoung, Choi, Seibum B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17703
container_issue 10
container_start_page 17690
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Hwang, Yunhyoung
Choi, Seibum B.
description In the transition period, autonomous vehicles are mixed with unconnected traffic occupants, such as non-autonomous vehicles and pedestrians, resulting in a major hurdle toward autonomy in urban areas, especially at intersections. In this context, the cooperative-intelligent transportation system (C-ITS) affords a promising solution to achieve a breakthrough with its omniscient sensors network and computing capability. From the perspective of a C-ITS-based service, the trajectory of non-autonomous vehicle is a critical uncertainty that resides at the intersection. Therefore, this paper proposes a unique interactive framework, which is installed in the edge server of C-ITS and can estimate the present trajectories and predict the future trajectories of the non-autonomous vehicles at intersections. The proposed framework was based on multiple hypotheses of possible maneuvers that formed the confined prior set to reduce the high uncertainties posed by the complicated environment of the urban intersection. The resulting all-in-one framework provided a stable long-term trajectory prediction with intrinsic maneuver classification and improved tracking in an integrated way by incorporating the interactions between the multiple hypotheses. This situation awareness can assist autonomous vehicles to drive safely and defensively. The proposed framework was verified using a dataset collected at a real urban intersection.
doi_str_mv 10.1109/TITS.2022.3169030
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2723901405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9767698</ieee_id><sourcerecordid>2723901405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-94589c9e9e8899d7d3ca811116244babb5581d1ab523c4f0dfec5012d3367be53</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx37lWIq1hRYFt16XbHbWptSkJlm0_94sLeaSyfA-E-ZB6J6SCaVEPFXL6n3CCGMTTnNBOLlAI5plZUIIzS-HmqWJIBm5Rjfe72I3zSgdoTD9kQ4MeI-twW8OPJiApWnxvA-9A1w5uQMVrDti2-EP2Gq1B7zx2nzidb8P-hCfi-PBhm1kPdYGxwqv9S-0A9x1Wg3k0gRwPk7S1tyiq07uPdyd7zHazJ-r2SJZvb4sZ9NVopjgIRFpVgolQEBZCtEWLVeypPHkLE0b2TRxP9pS2WSMq7QjbQcqI5S1nOdFAxkfo8fT3IOz3z34UO9s70z8smYF4yJKIEOKnlLKWe8ddPXB6S_pjjUl9SC3HuTWg9z6LDcyDydGA8B_XhR5kYuS_wFaw3Z_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723901405</pqid></control><display><type>article</type><title>Awareness on Present and Future Trajectory of Vehicle Using Multiple Hypotheses in the Mixed Traffic of Intersection</title><source>IEEE Electronic Library Online</source><creator>Hwang, Yunhyoung ; Choi, Seibum B.</creator><creatorcontrib>Hwang, Yunhyoung ; Choi, Seibum B.</creatorcontrib><description>In the transition period, autonomous vehicles are mixed with unconnected traffic occupants, such as non-autonomous vehicles and pedestrians, resulting in a major hurdle toward autonomy in urban areas, especially at intersections. In this context, the cooperative-intelligent transportation system (C-ITS) affords a promising solution to achieve a breakthrough with its omniscient sensors network and computing capability. From the perspective of a C-ITS-based service, the trajectory of non-autonomous vehicle is a critical uncertainty that resides at the intersection. Therefore, this paper proposes a unique interactive framework, which is installed in the edge server of C-ITS and can estimate the present trajectories and predict the future trajectories of the non-autonomous vehicles at intersections. The proposed framework was based on multiple hypotheses of possible maneuvers that formed the confined prior set to reduce the high uncertainties posed by the complicated environment of the urban intersection. The resulting all-in-one framework provided a stable long-term trajectory prediction with intrinsic maneuver classification and improved tracking in an integrated way by incorporating the interactions between the multiple hypotheses. This situation awareness can assist autonomous vehicles to drive safely and defensively. The proposed framework was verified using a dataset collected at a real urban intersection.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3169030</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autonomous vehicle ; Autonomous vehicles ; Autonomy ; C-ITS ; Edge computing ; Hidden Markov models ; Hypotheses ; intelligent transportation system ; Intelligent transportation systems ; intersection ; maneuver classification ; Maneuvers ; Pedestrians ; Predictive models ; Roads ; situation awareness ; Situational awareness ; Task analysis ; Traffic intersections ; Trajectory ; Trajectory analysis ; trajectory prediction ; Uncertainty ; Urban areas ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.17690-17703</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-94589c9e9e8899d7d3ca811116244babb5581d1ab523c4f0dfec5012d3367be53</citedby><cites>FETCH-LOGICAL-c293t-94589c9e9e8899d7d3ca811116244babb5581d1ab523c4f0dfec5012d3367be53</cites><orcidid>0000-0003-0533-2031 ; 0000-0002-8555-4429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9767698$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9767698$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hwang, Yunhyoung</creatorcontrib><creatorcontrib>Choi, Seibum B.</creatorcontrib><title>Awareness on Present and Future Trajectory of Vehicle Using Multiple Hypotheses in the Mixed Traffic of Intersection</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In the transition period, autonomous vehicles are mixed with unconnected traffic occupants, such as non-autonomous vehicles and pedestrians, resulting in a major hurdle toward autonomy in urban areas, especially at intersections. In this context, the cooperative-intelligent transportation system (C-ITS) affords a promising solution to achieve a breakthrough with its omniscient sensors network and computing capability. From the perspective of a C-ITS-based service, the trajectory of non-autonomous vehicle is a critical uncertainty that resides at the intersection. Therefore, this paper proposes a unique interactive framework, which is installed in the edge server of C-ITS and can estimate the present trajectories and predict the future trajectories of the non-autonomous vehicles at intersections. The proposed framework was based on multiple hypotheses of possible maneuvers that formed the confined prior set to reduce the high uncertainties posed by the complicated environment of the urban intersection. The resulting all-in-one framework provided a stable long-term trajectory prediction with intrinsic maneuver classification and improved tracking in an integrated way by incorporating the interactions between the multiple hypotheses. This situation awareness can assist autonomous vehicles to drive safely and defensively. The proposed framework was verified using a dataset collected at a real urban intersection.</description><subject>Autonomous vehicle</subject><subject>Autonomous vehicles</subject><subject>Autonomy</subject><subject>C-ITS</subject><subject>Edge computing</subject><subject>Hidden Markov models</subject><subject>Hypotheses</subject><subject>intelligent transportation system</subject><subject>Intelligent transportation systems</subject><subject>intersection</subject><subject>maneuver classification</subject><subject>Maneuvers</subject><subject>Pedestrians</subject><subject>Predictive models</subject><subject>Roads</subject><subject>situation awareness</subject><subject>Situational awareness</subject><subject>Task analysis</subject><subject>Traffic intersections</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><subject>trajectory prediction</subject><subject>Uncertainty</subject><subject>Urban areas</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx37lWIq1hRYFt16XbHbWptSkJlm0_94sLeaSyfA-E-ZB6J6SCaVEPFXL6n3CCGMTTnNBOLlAI5plZUIIzS-HmqWJIBm5Rjfe72I3zSgdoTD9kQ4MeI-twW8OPJiApWnxvA-9A1w5uQMVrDti2-EP2Gq1B7zx2nzidb8P-hCfi-PBhm1kPdYGxwqv9S-0A9x1Wg3k0gRwPk7S1tyiq07uPdyd7zHazJ-r2SJZvb4sZ9NVopjgIRFpVgolQEBZCtEWLVeypPHkLE0b2TRxP9pS2WSMq7QjbQcqI5S1nOdFAxkfo8fT3IOz3z34UO9s70z8smYF4yJKIEOKnlLKWe8ddPXB6S_pjjUl9SC3HuTWg9z6LDcyDydGA8B_XhR5kYuS_wFaw3Z_</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Hwang, Yunhyoung</creator><creator>Choi, Seibum B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0533-2031</orcidid><orcidid>https://orcid.org/0000-0002-8555-4429</orcidid></search><sort><creationdate>20221001</creationdate><title>Awareness on Present and Future Trajectory of Vehicle Using Multiple Hypotheses in the Mixed Traffic of Intersection</title><author>Hwang, Yunhyoung ; Choi, Seibum B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-94589c9e9e8899d7d3ca811116244babb5581d1ab523c4f0dfec5012d3367be53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autonomous vehicle</topic><topic>Autonomous vehicles</topic><topic>Autonomy</topic><topic>C-ITS</topic><topic>Edge computing</topic><topic>Hidden Markov models</topic><topic>Hypotheses</topic><topic>intelligent transportation system</topic><topic>Intelligent transportation systems</topic><topic>intersection</topic><topic>maneuver classification</topic><topic>Maneuvers</topic><topic>Pedestrians</topic><topic>Predictive models</topic><topic>Roads</topic><topic>situation awareness</topic><topic>Situational awareness</topic><topic>Task analysis</topic><topic>Traffic intersections</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><topic>trajectory prediction</topic><topic>Uncertainty</topic><topic>Urban areas</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Yunhyoung</creatorcontrib><creatorcontrib>Choi, Seibum B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hwang, Yunhyoung</au><au>Choi, Seibum B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Awareness on Present and Future Trajectory of Vehicle Using Multiple Hypotheses in the Mixed Traffic of Intersection</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>23</volume><issue>10</issue><spage>17690</spage><epage>17703</epage><pages>17690-17703</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In the transition period, autonomous vehicles are mixed with unconnected traffic occupants, such as non-autonomous vehicles and pedestrians, resulting in a major hurdle toward autonomy in urban areas, especially at intersections. In this context, the cooperative-intelligent transportation system (C-ITS) affords a promising solution to achieve a breakthrough with its omniscient sensors network and computing capability. From the perspective of a C-ITS-based service, the trajectory of non-autonomous vehicle is a critical uncertainty that resides at the intersection. Therefore, this paper proposes a unique interactive framework, which is installed in the edge server of C-ITS and can estimate the present trajectories and predict the future trajectories of the non-autonomous vehicles at intersections. The proposed framework was based on multiple hypotheses of possible maneuvers that formed the confined prior set to reduce the high uncertainties posed by the complicated environment of the urban intersection. The resulting all-in-one framework provided a stable long-term trajectory prediction with intrinsic maneuver classification and improved tracking in an integrated way by incorporating the interactions between the multiple hypotheses. This situation awareness can assist autonomous vehicles to drive safely and defensively. The proposed framework was verified using a dataset collected at a real urban intersection.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3169030</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0533-2031</orcidid><orcidid>https://orcid.org/0000-0002-8555-4429</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.17690-17703
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2723901405
source IEEE Electronic Library Online
subjects Autonomous vehicle
Autonomous vehicles
Autonomy
C-ITS
Edge computing
Hidden Markov models
Hypotheses
intelligent transportation system
Intelligent transportation systems
intersection
maneuver classification
Maneuvers
Pedestrians
Predictive models
Roads
situation awareness
Situational awareness
Task analysis
Traffic intersections
Trajectory
Trajectory analysis
trajectory prediction
Uncertainty
Urban areas
Vehicles
title Awareness on Present and Future Trajectory of Vehicle Using Multiple Hypotheses in the Mixed Traffic of Intersection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A40%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Awareness%20on%20Present%20and%20Future%20Trajectory%20of%20Vehicle%20Using%20Multiple%20Hypotheses%20in%20the%20Mixed%20Traffic%20of%20Intersection&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Hwang,%20Yunhyoung&rft.date=2022-10-01&rft.volume=23&rft.issue=10&rft.spage=17690&rft.epage=17703&rft.pages=17690-17703&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3169030&rft_dat=%3Cproquest_RIE%3E2723901405%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723901405&rft_id=info:pmid/&rft_ieee_id=9767698&rfr_iscdi=true