Domain-Specific Quantum Architecture Optimization
With the steady progress in quantum computing over recent years, roadmaps for upscaling quantum processors have relied heavily on the targeted qubit architectures. So far, similarly to the early age of classical computing, these designs have been crafted by human experts. These general-purpose archi...
Gespeichert in:
Veröffentlicht in: | IEEE journal on emerging and selected topics in circuits and systems 2022-09, Vol.12 (3), p.624-637 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 637 |
---|---|
container_issue | 3 |
container_start_page | 624 |
container_title | IEEE journal on emerging and selected topics in circuits and systems |
container_volume | 12 |
creator | Lin, Wan-Hsuan Tan, Bochen Niu, Murphy Yuezhen Kimko, Jason Cong, Jason |
description | With the steady progress in quantum computing over recent years, roadmaps for upscaling quantum processors have relied heavily on the targeted qubit architectures. So far, similarly to the early age of classical computing, these designs have been crafted by human experts. These general-purpose architectures, however, leave room for customization and optimization, especially when targeting popular near-term QC applications. In classical computing, customized architectures have demonstrated significant performance and energy efficiency gains over general-purpose counterparts. In this paper, we present a framework for optimizing quantum architectures, specifically through customizing qubit connectivity. It is the first work that (1) provides performance guarantees by integrating architecture optimization with an optimal compiler, (2) evaluates the impact of connectivity customization under a realistic crosstalk error model, and (3) benchmarks on realistic circuits of near-term interest, such as the quantum approximate optimization algorithm (QAOA) and quantum convolutional neural network (QCNN). We demonstrate up to 59% fidelity improvement in simulation by optimizing the heavy-hexagon architecture for QAOA maxcut circuits, and up to 14% improvement on the grid architecture. For the QCNN circuit, architecture optimization improves fidelity by 11% on the heavy-hexagon architecture and 605% on the grid architecture. |
doi_str_mv | 10.1109/JETCAS.2022.3202870 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2723901290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9869862</ieee_id><sourcerecordid>2723901290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-94adb4d5af6eea0c133a950690a725c70fc7208e70d4275eb7cd5de5303747043</originalsourceid><addsrcrecordid>eNo9kMtqAzEMRU1poaHNF2QT6HpS-R0vQ_omEEratXE8GurQedTjWbRfX4cJEULS4l5JHEJmFBaUgrl_e_xYr3YLBowteK5LDRdkwqhUBedKXp5nqa_JtO8PkEMqqoSYEPrQ1i40xa5DH6rg5--Da9JQz1fRf4WEPg0R59suhTr8uRTa5pZcVe67x-mp35DPp_zBS7HZPr-uV5vCM6NTYYQr96KUrlKIDjzl3BkJyoDTTHoNldcMlqihFExL3GtfyhIlB66FBsFvyN24t4vtz4B9sod2iE0-aZlm3ABlBrKKjyof276PWNkuhtrFX0vBHvHYEY894rEnPNk1G10BEc8Os1Q5Gf8HJZ5fvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723901290</pqid></control><display><type>article</type><title>Domain-Specific Quantum Architecture Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Wan-Hsuan ; Tan, Bochen ; Niu, Murphy Yuezhen ; Kimko, Jason ; Cong, Jason</creator><creatorcontrib>Lin, Wan-Hsuan ; Tan, Bochen ; Niu, Murphy Yuezhen ; Kimko, Jason ; Cong, Jason</creatorcontrib><description>With the steady progress in quantum computing over recent years, roadmaps for upscaling quantum processors have relied heavily on the targeted qubit architectures. So far, similarly to the early age of classical computing, these designs have been crafted by human experts. These general-purpose architectures, however, leave room for customization and optimization, especially when targeting popular near-term QC applications. In classical computing, customized architectures have demonstrated significant performance and energy efficiency gains over general-purpose counterparts. In this paper, we present a framework for optimizing quantum architectures, specifically through customizing qubit connectivity. It is the first work that (1) provides performance guarantees by integrating architecture optimization with an optimal compiler, (2) evaluates the impact of connectivity customization under a realistic crosstalk error model, and (3) benchmarks on realistic circuits of near-term interest, such as the quantum approximate optimization algorithm (QAOA) and quantum convolutional neural network (QCNN). We demonstrate up to 59% fidelity improvement in simulation by optimizing the heavy-hexagon architecture for QAOA maxcut circuits, and up to 14% improvement on the grid architecture. For the QCNN circuit, architecture optimization improves fidelity by 11% on the heavy-hexagon architecture and 605% on the grid architecture.</description><identifier>ISSN: 2156-3357</identifier><identifier>EISSN: 2156-3365</identifier><identifier>DOI: 10.1109/JETCAS.2022.3202870</identifier><identifier>CODEN: IJESLY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; architecture ; architecture optimization ; Artificial neural networks ; Circuits ; Computer architecture ; Customization ; design automation ; domain-specific architecture ; Hardware ; Layout ; Logic gates ; Optimization ; Quantum ; Quantum circuit ; Quantum computing ; Qubit ; Qubits (quantum computing)</subject><ispartof>IEEE journal on emerging and selected topics in circuits and systems, 2022-09, Vol.12 (3), p.624-637</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-94adb4d5af6eea0c133a950690a725c70fc7208e70d4275eb7cd5de5303747043</citedby><cites>FETCH-LOGICAL-c297t-94adb4d5af6eea0c133a950690a725c70fc7208e70d4275eb7cd5de5303747043</cites><orcidid>0000-0002-9711-2441 ; 0000-0003-2887-6963 ; 0000-0002-7486-2143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9869862$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9869862$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Wan-Hsuan</creatorcontrib><creatorcontrib>Tan, Bochen</creatorcontrib><creatorcontrib>Niu, Murphy Yuezhen</creatorcontrib><creatorcontrib>Kimko, Jason</creatorcontrib><creatorcontrib>Cong, Jason</creatorcontrib><title>Domain-Specific Quantum Architecture Optimization</title><title>IEEE journal on emerging and selected topics in circuits and systems</title><addtitle>JETCAS</addtitle><description>With the steady progress in quantum computing over recent years, roadmaps for upscaling quantum processors have relied heavily on the targeted qubit architectures. So far, similarly to the early age of classical computing, these designs have been crafted by human experts. These general-purpose architectures, however, leave room for customization and optimization, especially when targeting popular near-term QC applications. In classical computing, customized architectures have demonstrated significant performance and energy efficiency gains over general-purpose counterparts. In this paper, we present a framework for optimizing quantum architectures, specifically through customizing qubit connectivity. It is the first work that (1) provides performance guarantees by integrating architecture optimization with an optimal compiler, (2) evaluates the impact of connectivity customization under a realistic crosstalk error model, and (3) benchmarks on realistic circuits of near-term interest, such as the quantum approximate optimization algorithm (QAOA) and quantum convolutional neural network (QCNN). We demonstrate up to 59% fidelity improvement in simulation by optimizing the heavy-hexagon architecture for QAOA maxcut circuits, and up to 14% improvement on the grid architecture. For the QCNN circuit, architecture optimization improves fidelity by 11% on the heavy-hexagon architecture and 605% on the grid architecture.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>architecture</subject><subject>architecture optimization</subject><subject>Artificial neural networks</subject><subject>Circuits</subject><subject>Computer architecture</subject><subject>Customization</subject><subject>design automation</subject><subject>domain-specific architecture</subject><subject>Hardware</subject><subject>Layout</subject><subject>Logic gates</subject><subject>Optimization</subject><subject>Quantum</subject><subject>Quantum circuit</subject><subject>Quantum computing</subject><subject>Qubit</subject><subject>Qubits (quantum computing)</subject><issn>2156-3357</issn><issn>2156-3365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtqAzEMRU1poaHNF2QT6HpS-R0vQ_omEEratXE8GurQedTjWbRfX4cJEULS4l5JHEJmFBaUgrl_e_xYr3YLBowteK5LDRdkwqhUBedKXp5nqa_JtO8PkEMqqoSYEPrQ1i40xa5DH6rg5--Da9JQz1fRf4WEPg0R59suhTr8uRTa5pZcVe67x-mp35DPp_zBS7HZPr-uV5vCM6NTYYQr96KUrlKIDjzl3BkJyoDTTHoNldcMlqihFExL3GtfyhIlB66FBsFvyN24t4vtz4B9sod2iE0-aZlm3ABlBrKKjyof276PWNkuhtrFX0vBHvHYEY894rEnPNk1G10BEc8Os1Q5Gf8HJZ5fvw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Lin, Wan-Hsuan</creator><creator>Tan, Bochen</creator><creator>Niu, Murphy Yuezhen</creator><creator>Kimko, Jason</creator><creator>Cong, Jason</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9711-2441</orcidid><orcidid>https://orcid.org/0000-0003-2887-6963</orcidid><orcidid>https://orcid.org/0000-0002-7486-2143</orcidid></search><sort><creationdate>20220901</creationdate><title>Domain-Specific Quantum Architecture Optimization</title><author>Lin, Wan-Hsuan ; Tan, Bochen ; Niu, Murphy Yuezhen ; Kimko, Jason ; Cong, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-94adb4d5af6eea0c133a950690a725c70fc7208e70d4275eb7cd5de5303747043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>architecture</topic><topic>architecture optimization</topic><topic>Artificial neural networks</topic><topic>Circuits</topic><topic>Computer architecture</topic><topic>Customization</topic><topic>design automation</topic><topic>domain-specific architecture</topic><topic>Hardware</topic><topic>Layout</topic><topic>Logic gates</topic><topic>Optimization</topic><topic>Quantum</topic><topic>Quantum circuit</topic><topic>Quantum computing</topic><topic>Qubit</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Wan-Hsuan</creatorcontrib><creatorcontrib>Tan, Bochen</creatorcontrib><creatorcontrib>Niu, Murphy Yuezhen</creatorcontrib><creatorcontrib>Kimko, Jason</creatorcontrib><creatorcontrib>Cong, Jason</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on emerging and selected topics in circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Wan-Hsuan</au><au>Tan, Bochen</au><au>Niu, Murphy Yuezhen</au><au>Kimko, Jason</au><au>Cong, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain-Specific Quantum Architecture Optimization</atitle><jtitle>IEEE journal on emerging and selected topics in circuits and systems</jtitle><stitle>JETCAS</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>3</issue><spage>624</spage><epage>637</epage><pages>624-637</pages><issn>2156-3357</issn><eissn>2156-3365</eissn><coden>IJESLY</coden><abstract>With the steady progress in quantum computing over recent years, roadmaps for upscaling quantum processors have relied heavily on the targeted qubit architectures. So far, similarly to the early age of classical computing, these designs have been crafted by human experts. These general-purpose architectures, however, leave room for customization and optimization, especially when targeting popular near-term QC applications. In classical computing, customized architectures have demonstrated significant performance and energy efficiency gains over general-purpose counterparts. In this paper, we present a framework for optimizing quantum architectures, specifically through customizing qubit connectivity. It is the first work that (1) provides performance guarantees by integrating architecture optimization with an optimal compiler, (2) evaluates the impact of connectivity customization under a realistic crosstalk error model, and (3) benchmarks on realistic circuits of near-term interest, such as the quantum approximate optimization algorithm (QAOA) and quantum convolutional neural network (QCNN). We demonstrate up to 59% fidelity improvement in simulation by optimizing the heavy-hexagon architecture for QAOA maxcut circuits, and up to 14% improvement on the grid architecture. For the QCNN circuit, architecture optimization improves fidelity by 11% on the heavy-hexagon architecture and 605% on the grid architecture.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JETCAS.2022.3202870</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9711-2441</orcidid><orcidid>https://orcid.org/0000-0003-2887-6963</orcidid><orcidid>https://orcid.org/0000-0002-7486-2143</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3357 |
ispartof | IEEE journal on emerging and selected topics in circuits and systems, 2022-09, Vol.12 (3), p.624-637 |
issn | 2156-3357 2156-3365 |
language | eng |
recordid | cdi_proquest_journals_2723901290 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms architecture architecture optimization Artificial neural networks Circuits Computer architecture Customization design automation domain-specific architecture Hardware Layout Logic gates Optimization Quantum Quantum circuit Quantum computing Qubit Qubits (quantum computing) |
title | Domain-Specific Quantum Architecture Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain-Specific%20Quantum%20Architecture%20Optimization&rft.jtitle=IEEE%20journal%20on%20emerging%20and%20selected%20topics%20in%20circuits%20and%20systems&rft.au=Lin,%20Wan-Hsuan&rft.date=2022-09-01&rft.volume=12&rft.issue=3&rft.spage=624&rft.epage=637&rft.pages=624-637&rft.issn=2156-3357&rft.eissn=2156-3365&rft.coden=IJESLY&rft_id=info:doi/10.1109/JETCAS.2022.3202870&rft_dat=%3Cproquest_RIE%3E2723901290%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723901290&rft_id=info:pmid/&rft_ieee_id=9869862&rfr_iscdi=true |