A Stable Lightweight and Adaptive Feature Enhanced Convolution Neural Network for Efficient Railway Transit Object Detection

Obstacles in front of a train pose a significant threat to traffic safety, and many accidents happen under shunting mode when the speed of a train is below 45 km/h. The existing track object-detection algorithms encounter difficulty in balancing the detection precision and speed in shunting mode. Ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-10, Vol.23 (10), p.17952-17965
Hauptverfasser: Ye, Tao, Zhao, Zongyang, Wang, Shouan, Zhou, Fuqiang, Gao, Xiaozhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17965
container_issue 10
container_start_page 17952
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Ye, Tao
Zhao, Zongyang
Wang, Shouan
Zhou, Fuqiang
Gao, Xiaozhi
description Obstacles in front of a train pose a significant threat to traffic safety, and many accidents happen under shunting mode when the speed of a train is below 45 km/h. The existing track object-detection algorithms encounter difficulty in balancing the detection precision and speed in shunting mode. Additionally, their accuracy is insufficient, particularly for small objects in complex environments. To address these problems, we propose a stable lightweight feature extraction and adaptive feature fusion network for real-time detection of obstacles in railway traffic scenarios to ensure driving safety. The proposed network consists of three modules. The stable bottom feature extraction module reduces the computational load and extracts more image information stably. The lightweight feature extraction module improves feature extraction using a simple and effective network. The enhanced adaptive feature fusion module fuses the image and original features, improving the multiscale detection accuracy under complex environments, particularly in the case of small objects. With a default input size of 416 \times 416 pixels (px), the proposed method achieves a detection speed of 81 FPS and a mean average precision of 94.75% for the railway traffic dataset as well as a detection speed of 78 FPS (26 FPS faster and 0.47% higher than those of YOLOv4, respectively) and a mean average precision of 42.5% for MS COCO. This indicates its potential for real-world railway object detection and other multi-target detection tasks. Additionally, the experimental results based on PASCAL VOC2007 and VOC2012 indicate that the proposed approach is considerably better than the state-of-the-art models.
doi_str_mv 10.1109/TITS.2022.3156267
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2723901048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9740479</ieee_id><sourcerecordid>2723901048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a05f7805c94ad7c2210da2b7c5cc5e95d8d4f56fcc1aeb20ac0e8b984cd041d3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYsoOKc_QHwJ-Nx5kyZt8zjmpoPhwPW9pMmty6ztTNONgT_elokv91wu59wDXxDcU5hQCvIpW2abCQPGJhEVMYuTi2BEhUhDABpfDjvjoQQB18FN2-76KxeUjoKfKdl4VVRIVvZj6484TKJqQ6ZG7b09IFmg8p1DMq-3qtZoyKypD03VedvU5A07p6pe_LFxn6RsHJmXpdUWa0_ela2O6kQyp-rWerIudqg9eUbfS5--Da5KVbV496fjIFvMs9lruFq_LGfTVaiZjHyoQJRJCkJLrkyiGaNgFCsSLbQWKIVJDS9FXGpNFRYMlAZMC5lybYBTE42Dx_PbvWu-O2x9vms6V_eNOUtYJIECT3sXPbu0a9rWYZnvnf1S7pRTyAfG-cA4Hxjnf4z7zMM5YxHx3y8TDjyR0S-7Knou</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723901048</pqid></control><display><type>article</type><title>A Stable Lightweight and Adaptive Feature Enhanced Convolution Neural Network for Efficient Railway Transit Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Tao ; Zhao, Zongyang ; Wang, Shouan ; Zhou, Fuqiang ; Gao, Xiaozhi</creator><creatorcontrib>Ye, Tao ; Zhao, Zongyang ; Wang, Shouan ; Zhou, Fuqiang ; Gao, Xiaozhi</creatorcontrib><description>Obstacles in front of a train pose a significant threat to traffic safety, and many accidents happen under shunting mode when the speed of a train is below 45 km/h. The existing track object-detection algorithms encounter difficulty in balancing the detection precision and speed in shunting mode. Additionally, their accuracy is insufficient, particularly for small objects in complex environments. To address these problems, we propose a stable lightweight feature extraction and adaptive feature fusion network for real-time detection of obstacles in railway traffic scenarios to ensure driving safety. The proposed network consists of three modules. The stable bottom feature extraction module reduces the computational load and extracts more image information stably. The lightweight feature extraction module improves feature extraction using a simple and effective network. The enhanced adaptive feature fusion module fuses the image and original features, improving the multiscale detection accuracy under complex environments, particularly in the case of small objects. With a default input size of 416 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\times 416 &lt;/tex-math&gt;&lt;/inline-formula&gt; pixels (px), the proposed method achieves a detection speed of 81 FPS and a mean average precision of 94.75% for the railway traffic dataset as well as a detection speed of 78 FPS (26 FPS faster and 0.47% higher than those of YOLOv4, respectively) and a mean average precision of 42.5% for MS COCO. This indicates its potential for real-world railway object detection and other multi-target detection tasks. Additionally, the experimental results based on PASCAL VOC2007 and VOC2012 indicate that the proposed approach is considerably better than the state-of-the-art models.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3156267</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Adaptive feature fusion ; Adaptive systems ; Algorithms ; Artificial neural networks ; Convolution ; deep learning ; Feature extraction ; Image enhancement ; Lightweight ; lightweight network ; Mean ; Modules ; Object detection ; Object recognition ; Obstacle avoidance ; Rail transportation ; railway safety ; Real-time systems ; Safety ; Target detection ; Traffic speed ; Vehicle safety</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.17952-17965</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a05f7805c94ad7c2210da2b7c5cc5e95d8d4f56fcc1aeb20ac0e8b984cd041d3</citedby><cites>FETCH-LOGICAL-c293t-a05f7805c94ad7c2210da2b7c5cc5e95d8d4f56fcc1aeb20ac0e8b984cd041d3</cites><orcidid>0000-0001-9341-9342 ; 0000-0002-0078-5675 ; 0000-0002-1814-530X ; 0000-0002-0318-3549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9740479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9740479$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Tao</creatorcontrib><creatorcontrib>Zhao, Zongyang</creatorcontrib><creatorcontrib>Wang, Shouan</creatorcontrib><creatorcontrib>Zhou, Fuqiang</creatorcontrib><creatorcontrib>Gao, Xiaozhi</creatorcontrib><title>A Stable Lightweight and Adaptive Feature Enhanced Convolution Neural Network for Efficient Railway Transit Object Detection</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Obstacles in front of a train pose a significant threat to traffic safety, and many accidents happen under shunting mode when the speed of a train is below 45 km/h. The existing track object-detection algorithms encounter difficulty in balancing the detection precision and speed in shunting mode. Additionally, their accuracy is insufficient, particularly for small objects in complex environments. To address these problems, we propose a stable lightweight feature extraction and adaptive feature fusion network for real-time detection of obstacles in railway traffic scenarios to ensure driving safety. The proposed network consists of three modules. The stable bottom feature extraction module reduces the computational load and extracts more image information stably. The lightweight feature extraction module improves feature extraction using a simple and effective network. The enhanced adaptive feature fusion module fuses the image and original features, improving the multiscale detection accuracy under complex environments, particularly in the case of small objects. With a default input size of 416 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\times 416 &lt;/tex-math&gt;&lt;/inline-formula&gt; pixels (px), the proposed method achieves a detection speed of 81 FPS and a mean average precision of 94.75% for the railway traffic dataset as well as a detection speed of 78 FPS (26 FPS faster and 0.47% higher than those of YOLOv4, respectively) and a mean average precision of 42.5% for MS COCO. This indicates its potential for real-world railway object detection and other multi-target detection tasks. Additionally, the experimental results based on PASCAL VOC2007 and VOC2012 indicate that the proposed approach is considerably better than the state-of-the-art models.</description><subject>Accuracy</subject><subject>Adaptive feature fusion</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Lightweight</subject><subject>lightweight network</subject><subject>Mean</subject><subject>Modules</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Obstacle avoidance</subject><subject>Rail transportation</subject><subject>railway safety</subject><subject>Real-time systems</subject><subject>Safety</subject><subject>Target detection</subject><subject>Traffic speed</subject><subject>Vehicle safety</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYsoOKc_QHwJ-Nx5kyZt8zjmpoPhwPW9pMmty6ztTNONgT_elokv91wu59wDXxDcU5hQCvIpW2abCQPGJhEVMYuTi2BEhUhDABpfDjvjoQQB18FN2-76KxeUjoKfKdl4VVRIVvZj6484TKJqQ6ZG7b09IFmg8p1DMq-3qtZoyKypD03VedvU5A07p6pe_LFxn6RsHJmXpdUWa0_ela2O6kQyp-rWerIudqg9eUbfS5--Da5KVbV496fjIFvMs9lruFq_LGfTVaiZjHyoQJRJCkJLrkyiGaNgFCsSLbQWKIVJDS9FXGpNFRYMlAZMC5lybYBTE42Dx_PbvWu-O2x9vms6V_eNOUtYJIECT3sXPbu0a9rWYZnvnf1S7pRTyAfG-cA4Hxjnf4z7zMM5YxHx3y8TDjyR0S-7Knou</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Ye, Tao</creator><creator>Zhao, Zongyang</creator><creator>Wang, Shouan</creator><creator>Zhou, Fuqiang</creator><creator>Gao, Xiaozhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9341-9342</orcidid><orcidid>https://orcid.org/0000-0002-0078-5675</orcidid><orcidid>https://orcid.org/0000-0002-1814-530X</orcidid><orcidid>https://orcid.org/0000-0002-0318-3549</orcidid></search><sort><creationdate>20221001</creationdate><title>A Stable Lightweight and Adaptive Feature Enhanced Convolution Neural Network for Efficient Railway Transit Object Detection</title><author>Ye, Tao ; Zhao, Zongyang ; Wang, Shouan ; Zhou, Fuqiang ; Gao, Xiaozhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a05f7805c94ad7c2210da2b7c5cc5e95d8d4f56fcc1aeb20ac0e8b984cd041d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Adaptive feature fusion</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Lightweight</topic><topic>lightweight network</topic><topic>Mean</topic><topic>Modules</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Obstacle avoidance</topic><topic>Rail transportation</topic><topic>railway safety</topic><topic>Real-time systems</topic><topic>Safety</topic><topic>Target detection</topic><topic>Traffic speed</topic><topic>Vehicle safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Tao</creatorcontrib><creatorcontrib>Zhao, Zongyang</creatorcontrib><creatorcontrib>Wang, Shouan</creatorcontrib><creatorcontrib>Zhou, Fuqiang</creatorcontrib><creatorcontrib>Gao, Xiaozhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Tao</au><au>Zhao, Zongyang</au><au>Wang, Shouan</au><au>Zhou, Fuqiang</au><au>Gao, Xiaozhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stable Lightweight and Adaptive Feature Enhanced Convolution Neural Network for Efficient Railway Transit Object Detection</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>23</volume><issue>10</issue><spage>17952</spage><epage>17965</epage><pages>17952-17965</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Obstacles in front of a train pose a significant threat to traffic safety, and many accidents happen under shunting mode when the speed of a train is below 45 km/h. The existing track object-detection algorithms encounter difficulty in balancing the detection precision and speed in shunting mode. Additionally, their accuracy is insufficient, particularly for small objects in complex environments. To address these problems, we propose a stable lightweight feature extraction and adaptive feature fusion network for real-time detection of obstacles in railway traffic scenarios to ensure driving safety. The proposed network consists of three modules. The stable bottom feature extraction module reduces the computational load and extracts more image information stably. The lightweight feature extraction module improves feature extraction using a simple and effective network. The enhanced adaptive feature fusion module fuses the image and original features, improving the multiscale detection accuracy under complex environments, particularly in the case of small objects. With a default input size of 416 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\times 416 &lt;/tex-math&gt;&lt;/inline-formula&gt; pixels (px), the proposed method achieves a detection speed of 81 FPS and a mean average precision of 94.75% for the railway traffic dataset as well as a detection speed of 78 FPS (26 FPS faster and 0.47% higher than those of YOLOv4, respectively) and a mean average precision of 42.5% for MS COCO. This indicates its potential for real-world railway object detection and other multi-target detection tasks. Additionally, the experimental results based on PASCAL VOC2007 and VOC2012 indicate that the proposed approach is considerably better than the state-of-the-art models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3156267</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9341-9342</orcidid><orcidid>https://orcid.org/0000-0002-0078-5675</orcidid><orcidid>https://orcid.org/0000-0002-1814-530X</orcidid><orcidid>https://orcid.org/0000-0002-0318-3549</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.17952-17965
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2723901048
source IEEE Electronic Library (IEL)
subjects Accuracy
Adaptive feature fusion
Adaptive systems
Algorithms
Artificial neural networks
Convolution
deep learning
Feature extraction
Image enhancement
Lightweight
lightweight network
Mean
Modules
Object detection
Object recognition
Obstacle avoidance
Rail transportation
railway safety
Real-time systems
Safety
Target detection
Traffic speed
Vehicle safety
title A Stable Lightweight and Adaptive Feature Enhanced Convolution Neural Network for Efficient Railway Transit Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stable%20Lightweight%20and%20Adaptive%20Feature%20Enhanced%20Convolution%20Neural%20Network%20for%20Efficient%20Railway%20Transit%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ye,%20Tao&rft.date=2022-10-01&rft.volume=23&rft.issue=10&rft.spage=17952&rft.epage=17965&rft.pages=17952-17965&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3156267&rft_dat=%3Cproquest_RIE%3E2723901048%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723901048&rft_id=info:pmid/&rft_ieee_id=9740479&rfr_iscdi=true