A Stable Lightweight and Adaptive Feature Enhanced Convolution Neural Network for Efficient Railway Transit Object Detection
Obstacles in front of a train pose a significant threat to traffic safety, and many accidents happen under shunting mode when the speed of a train is below 45 km/h. The existing track object-detection algorithms encounter difficulty in balancing the detection precision and speed in shunting mode. Ad...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-10, Vol.23 (10), p.17952-17965 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17965 |
---|---|
container_issue | 10 |
container_start_page | 17952 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Ye, Tao Zhao, Zongyang Wang, Shouan Zhou, Fuqiang Gao, Xiaozhi |
description | Obstacles in front of a train pose a significant threat to traffic safety, and many accidents happen under shunting mode when the speed of a train is below 45 km/h. The existing track object-detection algorithms encounter difficulty in balancing the detection precision and speed in shunting mode. Additionally, their accuracy is insufficient, particularly for small objects in complex environments. To address these problems, we propose a stable lightweight feature extraction and adaptive feature fusion network for real-time detection of obstacles in railway traffic scenarios to ensure driving safety. The proposed network consists of three modules. The stable bottom feature extraction module reduces the computational load and extracts more image information stably. The lightweight feature extraction module improves feature extraction using a simple and effective network. The enhanced adaptive feature fusion module fuses the image and original features, improving the multiscale detection accuracy under complex environments, particularly in the case of small objects. With a default input size of 416 \times 416 pixels (px), the proposed method achieves a detection speed of 81 FPS and a mean average precision of 94.75% for the railway traffic dataset as well as a detection speed of 78 FPS (26 FPS faster and 0.47% higher than those of YOLOv4, respectively) and a mean average precision of 42.5% for MS COCO. This indicates its potential for real-world railway object detection and other multi-target detection tasks. Additionally, the experimental results based on PASCAL VOC2007 and VOC2012 indicate that the proposed approach is considerably better than the state-of-the-art models. |
doi_str_mv | 10.1109/TITS.2022.3156267 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2723901048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9740479</ieee_id><sourcerecordid>2723901048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a05f7805c94ad7c2210da2b7c5cc5e95d8d4f56fcc1aeb20ac0e8b984cd041d3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYsoOKc_QHwJ-Nx5kyZt8zjmpoPhwPW9pMmty6ztTNONgT_elokv91wu59wDXxDcU5hQCvIpW2abCQPGJhEVMYuTi2BEhUhDABpfDjvjoQQB18FN2-76KxeUjoKfKdl4VVRIVvZj6484TKJqQ6ZG7b09IFmg8p1DMq-3qtZoyKypD03VedvU5A07p6pe_LFxn6RsHJmXpdUWa0_ela2O6kQyp-rWerIudqg9eUbfS5--Da5KVbV496fjIFvMs9lruFq_LGfTVaiZjHyoQJRJCkJLrkyiGaNgFCsSLbQWKIVJDS9FXGpNFRYMlAZMC5lybYBTE42Dx_PbvWu-O2x9vms6V_eNOUtYJIECT3sXPbu0a9rWYZnvnf1S7pRTyAfG-cA4Hxjnf4z7zMM5YxHx3y8TDjyR0S-7Knou</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723901048</pqid></control><display><type>article</type><title>A Stable Lightweight and Adaptive Feature Enhanced Convolution Neural Network for Efficient Railway Transit Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Tao ; Zhao, Zongyang ; Wang, Shouan ; Zhou, Fuqiang ; Gao, Xiaozhi</creator><creatorcontrib>Ye, Tao ; Zhao, Zongyang ; Wang, Shouan ; Zhou, Fuqiang ; Gao, Xiaozhi</creatorcontrib><description>Obstacles in front of a train pose a significant threat to traffic safety, and many accidents happen under shunting mode when the speed of a train is below 45 km/h. The existing track object-detection algorithms encounter difficulty in balancing the detection precision and speed in shunting mode. Additionally, their accuracy is insufficient, particularly for small objects in complex environments. To address these problems, we propose a stable lightweight feature extraction and adaptive feature fusion network for real-time detection of obstacles in railway traffic scenarios to ensure driving safety. The proposed network consists of three modules. The stable bottom feature extraction module reduces the computational load and extracts more image information stably. The lightweight feature extraction module improves feature extraction using a simple and effective network. The enhanced adaptive feature fusion module fuses the image and original features, improving the multiscale detection accuracy under complex environments, particularly in the case of small objects. With a default input size of 416 <inline-formula> <tex-math notation="LaTeX">\times 416 </tex-math></inline-formula> pixels (px), the proposed method achieves a detection speed of 81 FPS and a mean average precision of 94.75% for the railway traffic dataset as well as a detection speed of 78 FPS (26 FPS faster and 0.47% higher than those of YOLOv4, respectively) and a mean average precision of 42.5% for MS COCO. This indicates its potential for real-world railway object detection and other multi-target detection tasks. Additionally, the experimental results based on PASCAL VOC2007 and VOC2012 indicate that the proposed approach is considerably better than the state-of-the-art models.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3156267</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Adaptive feature fusion ; Adaptive systems ; Algorithms ; Artificial neural networks ; Convolution ; deep learning ; Feature extraction ; Image enhancement ; Lightweight ; lightweight network ; Mean ; Modules ; Object detection ; Object recognition ; Obstacle avoidance ; Rail transportation ; railway safety ; Real-time systems ; Safety ; Target detection ; Traffic speed ; Vehicle safety</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.17952-17965</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a05f7805c94ad7c2210da2b7c5cc5e95d8d4f56fcc1aeb20ac0e8b984cd041d3</citedby><cites>FETCH-LOGICAL-c293t-a05f7805c94ad7c2210da2b7c5cc5e95d8d4f56fcc1aeb20ac0e8b984cd041d3</cites><orcidid>0000-0001-9341-9342 ; 0000-0002-0078-5675 ; 0000-0002-1814-530X ; 0000-0002-0318-3549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9740479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9740479$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Tao</creatorcontrib><creatorcontrib>Zhao, Zongyang</creatorcontrib><creatorcontrib>Wang, Shouan</creatorcontrib><creatorcontrib>Zhou, Fuqiang</creatorcontrib><creatorcontrib>Gao, Xiaozhi</creatorcontrib><title>A Stable Lightweight and Adaptive Feature Enhanced Convolution Neural Network for Efficient Railway Transit Object Detection</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Obstacles in front of a train pose a significant threat to traffic safety, and many accidents happen under shunting mode when the speed of a train is below 45 km/h. The existing track object-detection algorithms encounter difficulty in balancing the detection precision and speed in shunting mode. Additionally, their accuracy is insufficient, particularly for small objects in complex environments. To address these problems, we propose a stable lightweight feature extraction and adaptive feature fusion network for real-time detection of obstacles in railway traffic scenarios to ensure driving safety. The proposed network consists of three modules. The stable bottom feature extraction module reduces the computational load and extracts more image information stably. The lightweight feature extraction module improves feature extraction using a simple and effective network. The enhanced adaptive feature fusion module fuses the image and original features, improving the multiscale detection accuracy under complex environments, particularly in the case of small objects. With a default input size of 416 <inline-formula> <tex-math notation="LaTeX">\times 416 </tex-math></inline-formula> pixels (px), the proposed method achieves a detection speed of 81 FPS and a mean average precision of 94.75% for the railway traffic dataset as well as a detection speed of 78 FPS (26 FPS faster and 0.47% higher than those of YOLOv4, respectively) and a mean average precision of 42.5% for MS COCO. This indicates its potential for real-world railway object detection and other multi-target detection tasks. Additionally, the experimental results based on PASCAL VOC2007 and VOC2012 indicate that the proposed approach is considerably better than the state-of-the-art models.</description><subject>Accuracy</subject><subject>Adaptive feature fusion</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Lightweight</subject><subject>lightweight network</subject><subject>Mean</subject><subject>Modules</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Obstacle avoidance</subject><subject>Rail transportation</subject><subject>railway safety</subject><subject>Real-time systems</subject><subject>Safety</subject><subject>Target detection</subject><subject>Traffic speed</subject><subject>Vehicle safety</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYsoOKc_QHwJ-Nx5kyZt8zjmpoPhwPW9pMmty6ztTNONgT_elokv91wu59wDXxDcU5hQCvIpW2abCQPGJhEVMYuTi2BEhUhDABpfDjvjoQQB18FN2-76KxeUjoKfKdl4VVRIVvZj6484TKJqQ6ZG7b09IFmg8p1DMq-3qtZoyKypD03VedvU5A07p6pe_LFxn6RsHJmXpdUWa0_ela2O6kQyp-rWerIudqg9eUbfS5--Da5KVbV496fjIFvMs9lruFq_LGfTVaiZjHyoQJRJCkJLrkyiGaNgFCsSLbQWKIVJDS9FXGpNFRYMlAZMC5lybYBTE42Dx_PbvWu-O2x9vms6V_eNOUtYJIECT3sXPbu0a9rWYZnvnf1S7pRTyAfG-cA4Hxjnf4z7zMM5YxHx3y8TDjyR0S-7Knou</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Ye, Tao</creator><creator>Zhao, Zongyang</creator><creator>Wang, Shouan</creator><creator>Zhou, Fuqiang</creator><creator>Gao, Xiaozhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9341-9342</orcidid><orcidid>https://orcid.org/0000-0002-0078-5675</orcidid><orcidid>https://orcid.org/0000-0002-1814-530X</orcidid><orcidid>https://orcid.org/0000-0002-0318-3549</orcidid></search><sort><creationdate>20221001</creationdate><title>A Stable Lightweight and Adaptive Feature Enhanced Convolution Neural Network for Efficient Railway Transit Object Detection</title><author>Ye, Tao ; Zhao, Zongyang ; Wang, Shouan ; Zhou, Fuqiang ; Gao, Xiaozhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a05f7805c94ad7c2210da2b7c5cc5e95d8d4f56fcc1aeb20ac0e8b984cd041d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Adaptive feature fusion</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Lightweight</topic><topic>lightweight network</topic><topic>Mean</topic><topic>Modules</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Obstacle avoidance</topic><topic>Rail transportation</topic><topic>railway safety</topic><topic>Real-time systems</topic><topic>Safety</topic><topic>Target detection</topic><topic>Traffic speed</topic><topic>Vehicle safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Tao</creatorcontrib><creatorcontrib>Zhao, Zongyang</creatorcontrib><creatorcontrib>Wang, Shouan</creatorcontrib><creatorcontrib>Zhou, Fuqiang</creatorcontrib><creatorcontrib>Gao, Xiaozhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Tao</au><au>Zhao, Zongyang</au><au>Wang, Shouan</au><au>Zhou, Fuqiang</au><au>Gao, Xiaozhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stable Lightweight and Adaptive Feature Enhanced Convolution Neural Network for Efficient Railway Transit Object Detection</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>23</volume><issue>10</issue><spage>17952</spage><epage>17965</epage><pages>17952-17965</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Obstacles in front of a train pose a significant threat to traffic safety, and many accidents happen under shunting mode when the speed of a train is below 45 km/h. The existing track object-detection algorithms encounter difficulty in balancing the detection precision and speed in shunting mode. Additionally, their accuracy is insufficient, particularly for small objects in complex environments. To address these problems, we propose a stable lightweight feature extraction and adaptive feature fusion network for real-time detection of obstacles in railway traffic scenarios to ensure driving safety. The proposed network consists of three modules. The stable bottom feature extraction module reduces the computational load and extracts more image information stably. The lightweight feature extraction module improves feature extraction using a simple and effective network. The enhanced adaptive feature fusion module fuses the image and original features, improving the multiscale detection accuracy under complex environments, particularly in the case of small objects. With a default input size of 416 <inline-formula> <tex-math notation="LaTeX">\times 416 </tex-math></inline-formula> pixels (px), the proposed method achieves a detection speed of 81 FPS and a mean average precision of 94.75% for the railway traffic dataset as well as a detection speed of 78 FPS (26 FPS faster and 0.47% higher than those of YOLOv4, respectively) and a mean average precision of 42.5% for MS COCO. This indicates its potential for real-world railway object detection and other multi-target detection tasks. Additionally, the experimental results based on PASCAL VOC2007 and VOC2012 indicate that the proposed approach is considerably better than the state-of-the-art models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3156267</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9341-9342</orcidid><orcidid>https://orcid.org/0000-0002-0078-5675</orcidid><orcidid>https://orcid.org/0000-0002-1814-530X</orcidid><orcidid>https://orcid.org/0000-0002-0318-3549</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.17952-17965 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2723901048 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Adaptive feature fusion Adaptive systems Algorithms Artificial neural networks Convolution deep learning Feature extraction Image enhancement Lightweight lightweight network Mean Modules Object detection Object recognition Obstacle avoidance Rail transportation railway safety Real-time systems Safety Target detection Traffic speed Vehicle safety |
title | A Stable Lightweight and Adaptive Feature Enhanced Convolution Neural Network for Efficient Railway Transit Object Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stable%20Lightweight%20and%20Adaptive%20Feature%20Enhanced%20Convolution%20Neural%20Network%20for%20Efficient%20Railway%20Transit%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ye,%20Tao&rft.date=2022-10-01&rft.volume=23&rft.issue=10&rft.spage=17952&rft.epage=17965&rft.pages=17952-17965&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3156267&rft_dat=%3Cproquest_RIE%3E2723901048%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723901048&rft_id=info:pmid/&rft_ieee_id=9740479&rfr_iscdi=true |