A Secure and Intelligent Framework for Vehicle Health Monitoring Exploiting Big-Data Analytics
The dependency on vehicles is increasing tremendously due to its excellent transport capacity, fast, efficient, flexible, pleasant journey, minimal physical effort, and substantial economic impact. As a result, the demand for smart and intelligent feature enhancement is growing and becoming a prime...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-10, Vol.23 (10), p.19727-19742 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19742 |
---|---|
container_issue | 10 |
container_start_page | 19727 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Rahman, Md. Arafatur Rahim, Md. Abdur Rahman, Md. Mustafizur Moustafa, Nour Razzak, Imran Ahmad, Tanvir Patwary, Mohammad N. |
description | The dependency on vehicles is increasing tremendously due to its excellent transport capacity, fast, efficient, flexible, pleasant journey, minimal physical effort, and substantial economic impact. As a result, the demand for smart and intelligent feature enhancement is growing and becoming a prime concern for maximum productivity based on the current perspective. In this case, the Internet of Everything (IoE) is an emerging concept that can play an essential role in the automotive industry by integrating the stakeholders, process, data, and things via networked connections. But the unavailability of intelligent features leads to negligence about proper maintenance of vehicle vulnerable parts, reckless driving and severe accident, lack of instructive driving, and improper decision, which incurred extra expenses for maintenance besides hindering national economic growth. For this, we proposed a conceptual framework for a central VHMS exploiting IoE-driven Multi-Layer Heterogeneous Networks (HetNet) and a machine learning technique to oversee individual vehicle health conditions, notify the respective owner-driver real-timely and store the information for further necessary action. This article transparently portrayed an overview of central VHMS and proposed the taxonomy to achieve such an objective. Subsequently, we unveiled the framework for central VHMS, IoE-driven Multi-tire HetNet, with a secure and trustworthy data collection and analytics system. Finally, anticipating this proposition's outcome is immense in the automotive sector. It may motivate the researcher to develop a central intelligent and secure vehicular condition diagnostic system to move this sector towards Industry 4.0. |
doi_str_mv | 10.1109/TITS.2021.3138255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2723900645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9668996</ieee_id><sourcerecordid>2723900645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-3de8e7693f9a3770bfec62a239955304dbf4ca48495bda0a09a13447ed58478c3</originalsourceid><addsrcrecordid>eNo9kEFPAjEUhBujiYj-AOOliefFdtvubo-oICQYD6BHm9J9C8Vli22J8u_dDcTTm7zMTCYfQreUDCgl8mExXcwHKUnpgFFWpEKcoR4VokgIodl5p1OeSCLIJboKYdN-uaC0hz6HeA5m7wHrpsTTJkJd2xU0EY-93sKP81-4ch5_wNqaGvAEdB3X-NU1NjpvmxUe_e5qZ2MnH-0qedZR42Gj60O0Jlyji0rXAW5Ot4_ex6PF0ySZvb1Mn4azxDCWxYSVUECeSVZJzfKcLCswWapTJqUQjPByWXGjecGlWJaaaCI1ZZznUIqC54VhfXR_7N15972HENXG7X27Iqg0b2sIybhoXfToMt6F4KFSO2-32h8UJarDqDqMqsOoThjbzN0xYwHg3y-zrJAyY39py24G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723900645</pqid></control><display><type>article</type><title>A Secure and Intelligent Framework for Vehicle Health Monitoring Exploiting Big-Data Analytics</title><source>IEEE Electronic Library (IEL)</source><creator>Rahman, Md. Arafatur ; Rahim, Md. Abdur ; Rahman, Md. Mustafizur ; Moustafa, Nour ; Razzak, Imran ; Ahmad, Tanvir ; Patwary, Mohammad N.</creator><creatorcontrib>Rahman, Md. Arafatur ; Rahim, Md. Abdur ; Rahman, Md. Mustafizur ; Moustafa, Nour ; Razzak, Imran ; Ahmad, Tanvir ; Patwary, Mohammad N.</creatorcontrib><description>The dependency on vehicles is increasing tremendously due to its excellent transport capacity, fast, efficient, flexible, pleasant journey, minimal physical effort, and substantial economic impact. As a result, the demand for smart and intelligent feature enhancement is growing and becoming a prime concern for maximum productivity based on the current perspective. In this case, the Internet of Everything (IoE) is an emerging concept that can play an essential role in the automotive industry by integrating the stakeholders, process, data, and things via networked connections. But the unavailability of intelligent features leads to negligence about proper maintenance of vehicle vulnerable parts, reckless driving and severe accident, lack of instructive driving, and improper decision, which incurred extra expenses for maintenance besides hindering national economic growth. For this, we proposed a conceptual framework for a central VHMS exploiting IoE-driven Multi-Layer Heterogeneous Networks (HetNet) and a machine learning technique to oversee individual vehicle health conditions, notify the respective owner-driver real-timely and store the information for further necessary action. This article transparently portrayed an overview of central VHMS and proposed the taxonomy to achieve such an objective. Subsequently, we unveiled the framework for central VHMS, IoE-driven Multi-tire HetNet, with a secure and trustworthy data collection and analytics system. Finally, anticipating this proposition's outcome is immense in the automotive sector. It may motivate the researcher to develop a central intelligent and secure vehicular condition diagnostic system to move this sector towards Industry 4.0.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3138255</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automobile industry ; Central VHMS ; Communication system security ; Data analysis ; Data collection ; Diagnostic systems ; Driving ; Economic development ; Economic impact ; Fourth Industrial Revolution ; HetNet ; Impact analysis ; IoE ; Machine learning ; Maintenance ; Monitoring ; Multilayers ; Negligence ; Optical fiber networks ; Stakeholders ; Taxonomy ; VehiChain ; Wireless sensor networks</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.19727-19742</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-3de8e7693f9a3770bfec62a239955304dbf4ca48495bda0a09a13447ed58478c3</citedby><cites>FETCH-LOGICAL-c336t-3de8e7693f9a3770bfec62a239955304dbf4ca48495bda0a09a13447ed58478c3</cites><orcidid>0000-0002-3930-6600 ; 0000-0002-8221-6168 ; 0000-0001-6127-9349 ; 0000-0002-4424-8345 ; 0000-0003-2878-5295 ; 0000-0002-4279-4190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9668996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9668996$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rahman, Md. Arafatur</creatorcontrib><creatorcontrib>Rahim, Md. Abdur</creatorcontrib><creatorcontrib>Rahman, Md. Mustafizur</creatorcontrib><creatorcontrib>Moustafa, Nour</creatorcontrib><creatorcontrib>Razzak, Imran</creatorcontrib><creatorcontrib>Ahmad, Tanvir</creatorcontrib><creatorcontrib>Patwary, Mohammad N.</creatorcontrib><title>A Secure and Intelligent Framework for Vehicle Health Monitoring Exploiting Big-Data Analytics</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The dependency on vehicles is increasing tremendously due to its excellent transport capacity, fast, efficient, flexible, pleasant journey, minimal physical effort, and substantial economic impact. As a result, the demand for smart and intelligent feature enhancement is growing and becoming a prime concern for maximum productivity based on the current perspective. In this case, the Internet of Everything (IoE) is an emerging concept that can play an essential role in the automotive industry by integrating the stakeholders, process, data, and things via networked connections. But the unavailability of intelligent features leads to negligence about proper maintenance of vehicle vulnerable parts, reckless driving and severe accident, lack of instructive driving, and improper decision, which incurred extra expenses for maintenance besides hindering national economic growth. For this, we proposed a conceptual framework for a central VHMS exploiting IoE-driven Multi-Layer Heterogeneous Networks (HetNet) and a machine learning technique to oversee individual vehicle health conditions, notify the respective owner-driver real-timely and store the information for further necessary action. This article transparently portrayed an overview of central VHMS and proposed the taxonomy to achieve such an objective. Subsequently, we unveiled the framework for central VHMS, IoE-driven Multi-tire HetNet, with a secure and trustworthy data collection and analytics system. Finally, anticipating this proposition's outcome is immense in the automotive sector. It may motivate the researcher to develop a central intelligent and secure vehicular condition diagnostic system to move this sector towards Industry 4.0.</description><subject>Automobile industry</subject><subject>Central VHMS</subject><subject>Communication system security</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Diagnostic systems</subject><subject>Driving</subject><subject>Economic development</subject><subject>Economic impact</subject><subject>Fourth Industrial Revolution</subject><subject>HetNet</subject><subject>Impact analysis</subject><subject>IoE</subject><subject>Machine learning</subject><subject>Maintenance</subject><subject>Monitoring</subject><subject>Multilayers</subject><subject>Negligence</subject><subject>Optical fiber networks</subject><subject>Stakeholders</subject><subject>Taxonomy</subject><subject>VehiChain</subject><subject>Wireless sensor networks</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAjEUhBujiYj-AOOliefFdtvubo-oICQYD6BHm9J9C8Vli22J8u_dDcTTm7zMTCYfQreUDCgl8mExXcwHKUnpgFFWpEKcoR4VokgIodl5p1OeSCLIJboKYdN-uaC0hz6HeA5m7wHrpsTTJkJd2xU0EY-93sKP81-4ch5_wNqaGvAEdB3X-NU1NjpvmxUe_e5qZ2MnH-0qedZR42Gj60O0Jlyji0rXAW5Ot4_ex6PF0ySZvb1Mn4azxDCWxYSVUECeSVZJzfKcLCswWapTJqUQjPByWXGjecGlWJaaaCI1ZZznUIqC54VhfXR_7N15972HENXG7X27Iqg0b2sIybhoXfToMt6F4KFSO2-32h8UJarDqDqMqsOoThjbzN0xYwHg3y-zrJAyY39py24G</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Rahman, Md. Arafatur</creator><creator>Rahim, Md. Abdur</creator><creator>Rahman, Md. Mustafizur</creator><creator>Moustafa, Nour</creator><creator>Razzak, Imran</creator><creator>Ahmad, Tanvir</creator><creator>Patwary, Mohammad N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3930-6600</orcidid><orcidid>https://orcid.org/0000-0002-8221-6168</orcidid><orcidid>https://orcid.org/0000-0001-6127-9349</orcidid><orcidid>https://orcid.org/0000-0002-4424-8345</orcidid><orcidid>https://orcid.org/0000-0003-2878-5295</orcidid><orcidid>https://orcid.org/0000-0002-4279-4190</orcidid></search><sort><creationdate>20221001</creationdate><title>A Secure and Intelligent Framework for Vehicle Health Monitoring Exploiting Big-Data Analytics</title><author>Rahman, Md. Arafatur ; Rahim, Md. Abdur ; Rahman, Md. Mustafizur ; Moustafa, Nour ; Razzak, Imran ; Ahmad, Tanvir ; Patwary, Mohammad N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-3de8e7693f9a3770bfec62a239955304dbf4ca48495bda0a09a13447ed58478c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automobile industry</topic><topic>Central VHMS</topic><topic>Communication system security</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Diagnostic systems</topic><topic>Driving</topic><topic>Economic development</topic><topic>Economic impact</topic><topic>Fourth Industrial Revolution</topic><topic>HetNet</topic><topic>Impact analysis</topic><topic>IoE</topic><topic>Machine learning</topic><topic>Maintenance</topic><topic>Monitoring</topic><topic>Multilayers</topic><topic>Negligence</topic><topic>Optical fiber networks</topic><topic>Stakeholders</topic><topic>Taxonomy</topic><topic>VehiChain</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Md. Arafatur</creatorcontrib><creatorcontrib>Rahim, Md. Abdur</creatorcontrib><creatorcontrib>Rahman, Md. Mustafizur</creatorcontrib><creatorcontrib>Moustafa, Nour</creatorcontrib><creatorcontrib>Razzak, Imran</creatorcontrib><creatorcontrib>Ahmad, Tanvir</creatorcontrib><creatorcontrib>Patwary, Mohammad N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahman, Md. Arafatur</au><au>Rahim, Md. Abdur</au><au>Rahman, Md. Mustafizur</au><au>Moustafa, Nour</au><au>Razzak, Imran</au><au>Ahmad, Tanvir</au><au>Patwary, Mohammad N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Secure and Intelligent Framework for Vehicle Health Monitoring Exploiting Big-Data Analytics</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>23</volume><issue>10</issue><spage>19727</spage><epage>19742</epage><pages>19727-19742</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The dependency on vehicles is increasing tremendously due to its excellent transport capacity, fast, efficient, flexible, pleasant journey, minimal physical effort, and substantial economic impact. As a result, the demand for smart and intelligent feature enhancement is growing and becoming a prime concern for maximum productivity based on the current perspective. In this case, the Internet of Everything (IoE) is an emerging concept that can play an essential role in the automotive industry by integrating the stakeholders, process, data, and things via networked connections. But the unavailability of intelligent features leads to negligence about proper maintenance of vehicle vulnerable parts, reckless driving and severe accident, lack of instructive driving, and improper decision, which incurred extra expenses for maintenance besides hindering national economic growth. For this, we proposed a conceptual framework for a central VHMS exploiting IoE-driven Multi-Layer Heterogeneous Networks (HetNet) and a machine learning technique to oversee individual vehicle health conditions, notify the respective owner-driver real-timely and store the information for further necessary action. This article transparently portrayed an overview of central VHMS and proposed the taxonomy to achieve such an objective. Subsequently, we unveiled the framework for central VHMS, IoE-driven Multi-tire HetNet, with a secure and trustworthy data collection and analytics system. Finally, anticipating this proposition's outcome is immense in the automotive sector. It may motivate the researcher to develop a central intelligent and secure vehicular condition diagnostic system to move this sector towards Industry 4.0.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3138255</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3930-6600</orcidid><orcidid>https://orcid.org/0000-0002-8221-6168</orcidid><orcidid>https://orcid.org/0000-0001-6127-9349</orcidid><orcidid>https://orcid.org/0000-0002-4424-8345</orcidid><orcidid>https://orcid.org/0000-0003-2878-5295</orcidid><orcidid>https://orcid.org/0000-0002-4279-4190</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.19727-19742 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2723900645 |
source | IEEE Electronic Library (IEL) |
subjects | Automobile industry Central VHMS Communication system security Data analysis Data collection Diagnostic systems Driving Economic development Economic impact Fourth Industrial Revolution HetNet Impact analysis IoE Machine learning Maintenance Monitoring Multilayers Negligence Optical fiber networks Stakeholders Taxonomy VehiChain Wireless sensor networks |
title | A Secure and Intelligent Framework for Vehicle Health Monitoring Exploiting Big-Data Analytics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Secure%20and%20Intelligent%20Framework%20for%20Vehicle%20Health%20Monitoring%20Exploiting%20Big-Data%20Analytics&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Rahman,%20Md.%20Arafatur&rft.date=2022-10-01&rft.volume=23&rft.issue=10&rft.spage=19727&rft.epage=19742&rft.pages=19727-19742&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3138255&rft_dat=%3Cproquest_RIE%3E2723900645%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723900645&rft_id=info:pmid/&rft_ieee_id=9668996&rfr_iscdi=true |