Mobility-Aware Cluster Federated Learning in Hierarchical Wireless Networks

Implementing federated learning (FL) algorithms in wireless networks has garnered a wide range of attention. However, few works have considered the impact of user mobility on the learning performance. To fill this research gap, we develop a theoretical model to characterize the hierarchical federate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2022-10, Vol.21 (10), p.8441-8458
Hauptverfasser: Feng, Chenyuan, Yang, Howard H., Hu, Deshun, Zhao, Zhiwei, Quek, Tony Q. S., Min, Geyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8458
container_issue 10
container_start_page 8441
container_title IEEE transactions on wireless communications
container_volume 21
creator Feng, Chenyuan
Yang, Howard H.
Hu, Deshun
Zhao, Zhiwei
Quek, Tony Q. S.
Min, Geyong
description Implementing federated learning (FL) algorithms in wireless networks has garnered a wide range of attention. However, few works have considered the impact of user mobility on the learning performance. To fill this research gap, we develop a theoretical model to characterize the hierarchical federated learning (HFL) algorithm in wireless networks where the mobile users may roam across edge access points (APs), leading to incompletion of inconsistent FL training. We provide the convergence analysis of conventional HFL with user mobility. Our analysis proves that the learning performance of conventional HFL deteriorates drastically with highly-mobile users. And such a decline in the learning performance will be exacerbated with small number of participants and large data distribution divergences among users' local data. To circumvent these issues, we propose a mobility-aware cluster federated learning (MACFL) algorithm by redesigning the access mechanism, local update rule, and model aggregation scheme. We also conduct experiments to evaluate the learning performance of conventional HFL, a cluster federated learning (CFL) with simple averaging, and our proposed MACFL. The results show that our MACFL can enhance the learning performance, especially for three different cases: ( i ) the case of users with non-independent and identically distributed (non-IID) data, ( ii ) the case of users with high mobility, and ( iii ) the case with a small number of users.
doi_str_mv 10.1109/TWC.2022.3166386
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2723900017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9759241</ieee_id><sourcerecordid>2723900017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-528e90c82f2d37d0fdba122a7caed4c862c13fddb93f65cc4ec5c968e192efe63</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKfvgi8FnzuTS5M2j6M4J059mewxZMlVM2s7k46x_96WDZ_uOL7fHfcRcsvohDGqHparcgIUYMKZlLyQZ2TEhChSgKw4H3ouUwa5vCRXMW4oZbkUYkReXtu1r313SKd7EzAp613sMCQzdBhMhy5ZoAmNbz4T3yRz3w-D_fLW1MnKB6wxxuQNu30bvuM1uahMHfHmVMfkY_a4LOfp4v3puZwuUss571IBBSpqC6jA8dzRyq0NAzC5NegyW0iwjFfOrRWvpLA2QyuskgUyBVih5GNyf9y7De3vDmOnN-0uNP1JDTlwRYfveooeKRvaGANWehv8jwkHzagelOlemR6U6ZOyPnJ3jHhE_MdVLhRkjP8BpRpoSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723900017</pqid></control><display><type>article</type><title>Mobility-Aware Cluster Federated Learning in Hierarchical Wireless Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Chenyuan ; Yang, Howard H. ; Hu, Deshun ; Zhao, Zhiwei ; Quek, Tony Q. S. ; Min, Geyong</creator><creatorcontrib>Feng, Chenyuan ; Yang, Howard H. ; Hu, Deshun ; Zhao, Zhiwei ; Quek, Tony Q. S. ; Min, Geyong</creatorcontrib><description><![CDATA[Implementing federated learning (FL) algorithms in wireless networks has garnered a wide range of attention. However, few works have considered the impact of user mobility on the learning performance. To fill this research gap, we develop a theoretical model to characterize the hierarchical federated learning (HFL) algorithm in wireless networks where the mobile users may roam across edge access points (APs), leading to incompletion of inconsistent FL training. We provide the convergence analysis of conventional HFL with user mobility. Our analysis proves that the learning performance of conventional HFL deteriorates drastically with highly-mobile users. And such a decline in the learning performance will be exacerbated with small number of participants and large data distribution divergences among users' local data. To circumvent these issues, we propose a mobility-aware cluster federated learning (MACFL) algorithm by redesigning the access mechanism, local update rule, and model aggregation scheme. We also conduct experiments to evaluate the learning performance of conventional HFL, a cluster federated learning (CFL) with simple averaging, and our proposed MACFL. The results show that our MACFL can enhance the learning performance, especially for three different cases: (<inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>) the case of users with non-independent and identically distributed (non-IID) data, (<inline-formula> <tex-math notation="LaTeX">ii </tex-math></inline-formula>) the case of users with high mobility, and (<inline-formula> <tex-math notation="LaTeX">iii </tex-math></inline-formula>) the case with a small number of users.]]></description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2022.3166386</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Clustering algorithms ; Clusters ; Collaborative work ; Convergence ; convergence analysis ; data heterogeneity ; Data models ; Federated learning ; Hierarchical federated learning ; Machine learning ; Performance evaluation ; Servers ; Training ; user mobility ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2022-10, Vol.21 (10), p.8441-8458</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-528e90c82f2d37d0fdba122a7caed4c862c13fddb93f65cc4ec5c968e192efe63</citedby><cites>FETCH-LOGICAL-c333t-528e90c82f2d37d0fdba122a7caed4c862c13fddb93f65cc4ec5c968e192efe63</cites><orcidid>0000-0003-1395-7314 ; 0000-0002-0256-2416 ; 0000-0001-5293-0558 ; 0000-0002-4037-3149 ; 0000-0002-8958-1985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9759241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9759241$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Chenyuan</creatorcontrib><creatorcontrib>Yang, Howard H.</creatorcontrib><creatorcontrib>Hu, Deshun</creatorcontrib><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Quek, Tony Q. S.</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><title>Mobility-Aware Cluster Federated Learning in Hierarchical Wireless Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description><![CDATA[Implementing federated learning (FL) algorithms in wireless networks has garnered a wide range of attention. However, few works have considered the impact of user mobility on the learning performance. To fill this research gap, we develop a theoretical model to characterize the hierarchical federated learning (HFL) algorithm in wireless networks where the mobile users may roam across edge access points (APs), leading to incompletion of inconsistent FL training. We provide the convergence analysis of conventional HFL with user mobility. Our analysis proves that the learning performance of conventional HFL deteriorates drastically with highly-mobile users. And such a decline in the learning performance will be exacerbated with small number of participants and large data distribution divergences among users' local data. To circumvent these issues, we propose a mobility-aware cluster federated learning (MACFL) algorithm by redesigning the access mechanism, local update rule, and model aggregation scheme. We also conduct experiments to evaluate the learning performance of conventional HFL, a cluster federated learning (CFL) with simple averaging, and our proposed MACFL. The results show that our MACFL can enhance the learning performance, especially for three different cases: (<inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>) the case of users with non-independent and identically distributed (non-IID) data, (<inline-formula> <tex-math notation="LaTeX">ii </tex-math></inline-formula>) the case of users with high mobility, and (<inline-formula> <tex-math notation="LaTeX">iii </tex-math></inline-formula>) the case with a small number of users.]]></description><subject>Algorithms</subject><subject>Clustering algorithms</subject><subject>Clusters</subject><subject>Collaborative work</subject><subject>Convergence</subject><subject>convergence analysis</subject><subject>data heterogeneity</subject><subject>Data models</subject><subject>Federated learning</subject><subject>Hierarchical federated learning</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Servers</subject><subject>Training</subject><subject>user mobility</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQh4MoOKfvgi8FnzuTS5M2j6M4J059mewxZMlVM2s7k46x_96WDZ_uOL7fHfcRcsvohDGqHparcgIUYMKZlLyQZ2TEhChSgKw4H3ouUwa5vCRXMW4oZbkUYkReXtu1r313SKd7EzAp613sMCQzdBhMhy5ZoAmNbz4T3yRz3w-D_fLW1MnKB6wxxuQNu30bvuM1uahMHfHmVMfkY_a4LOfp4v3puZwuUss571IBBSpqC6jA8dzRyq0NAzC5NegyW0iwjFfOrRWvpLA2QyuskgUyBVih5GNyf9y7De3vDmOnN-0uNP1JDTlwRYfveooeKRvaGANWehv8jwkHzagelOlemR6U6ZOyPnJ3jHhE_MdVLhRkjP8BpRpoSA</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Feng, Chenyuan</creator><creator>Yang, Howard H.</creator><creator>Hu, Deshun</creator><creator>Zhao, Zhiwei</creator><creator>Quek, Tony Q. S.</creator><creator>Min, Geyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid><orcidid>https://orcid.org/0000-0002-0256-2416</orcidid><orcidid>https://orcid.org/0000-0001-5293-0558</orcidid><orcidid>https://orcid.org/0000-0002-4037-3149</orcidid><orcidid>https://orcid.org/0000-0002-8958-1985</orcidid></search><sort><creationdate>202210</creationdate><title>Mobility-Aware Cluster Federated Learning in Hierarchical Wireless Networks</title><author>Feng, Chenyuan ; Yang, Howard H. ; Hu, Deshun ; Zhao, Zhiwei ; Quek, Tony Q. S. ; Min, Geyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-528e90c82f2d37d0fdba122a7caed4c862c13fddb93f65cc4ec5c968e192efe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clustering algorithms</topic><topic>Clusters</topic><topic>Collaborative work</topic><topic>Convergence</topic><topic>convergence analysis</topic><topic>data heterogeneity</topic><topic>Data models</topic><topic>Federated learning</topic><topic>Hierarchical federated learning</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Servers</topic><topic>Training</topic><topic>user mobility</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Chenyuan</creatorcontrib><creatorcontrib>Yang, Howard H.</creatorcontrib><creatorcontrib>Hu, Deshun</creatorcontrib><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Quek, Tony Q. S.</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Chenyuan</au><au>Yang, Howard H.</au><au>Hu, Deshun</au><au>Zhao, Zhiwei</au><au>Quek, Tony Q. S.</au><au>Min, Geyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobility-Aware Cluster Federated Learning in Hierarchical Wireless Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2022-10</date><risdate>2022</risdate><volume>21</volume><issue>10</issue><spage>8441</spage><epage>8458</epage><pages>8441-8458</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract><![CDATA[Implementing federated learning (FL) algorithms in wireless networks has garnered a wide range of attention. However, few works have considered the impact of user mobility on the learning performance. To fill this research gap, we develop a theoretical model to characterize the hierarchical federated learning (HFL) algorithm in wireless networks where the mobile users may roam across edge access points (APs), leading to incompletion of inconsistent FL training. We provide the convergence analysis of conventional HFL with user mobility. Our analysis proves that the learning performance of conventional HFL deteriorates drastically with highly-mobile users. And such a decline in the learning performance will be exacerbated with small number of participants and large data distribution divergences among users' local data. To circumvent these issues, we propose a mobility-aware cluster federated learning (MACFL) algorithm by redesigning the access mechanism, local update rule, and model aggregation scheme. We also conduct experiments to evaluate the learning performance of conventional HFL, a cluster federated learning (CFL) with simple averaging, and our proposed MACFL. The results show that our MACFL can enhance the learning performance, especially for three different cases: (<inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>) the case of users with non-independent and identically distributed (non-IID) data, (<inline-formula> <tex-math notation="LaTeX">ii </tex-math></inline-formula>) the case of users with high mobility, and (<inline-formula> <tex-math notation="LaTeX">iii </tex-math></inline-formula>) the case with a small number of users.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2022.3166386</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid><orcidid>https://orcid.org/0000-0002-0256-2416</orcidid><orcidid>https://orcid.org/0000-0001-5293-0558</orcidid><orcidid>https://orcid.org/0000-0002-4037-3149</orcidid><orcidid>https://orcid.org/0000-0002-8958-1985</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2022-10, Vol.21 (10), p.8441-8458
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_2723900017
source IEEE Electronic Library (IEL)
subjects Algorithms
Clustering algorithms
Clusters
Collaborative work
Convergence
convergence analysis
data heterogeneity
Data models
Federated learning
Hierarchical federated learning
Machine learning
Performance evaluation
Servers
Training
user mobility
Wireless networks
title Mobility-Aware Cluster Federated Learning in Hierarchical Wireless Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobility-Aware%20Cluster%20Federated%20Learning%20in%20Hierarchical%20Wireless%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Feng,%20Chenyuan&rft.date=2022-10&rft.volume=21&rft.issue=10&rft.spage=8441&rft.epage=8458&rft.pages=8441-8458&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2022.3166386&rft_dat=%3Cproquest_RIE%3E2723900017%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723900017&rft_id=info:pmid/&rft_ieee_id=9759241&rfr_iscdi=true