Mobility-Aware Cluster Federated Learning in Hierarchical Wireless Networks
Implementing federated learning (FL) algorithms in wireless networks has garnered a wide range of attention. However, few works have considered the impact of user mobility on the learning performance. To fill this research gap, we develop a theoretical model to characterize the hierarchical federate...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2022-10, Vol.21 (10), p.8441-8458 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8458 |
---|---|
container_issue | 10 |
container_start_page | 8441 |
container_title | IEEE transactions on wireless communications |
container_volume | 21 |
creator | Feng, Chenyuan Yang, Howard H. Hu, Deshun Zhao, Zhiwei Quek, Tony Q. S. Min, Geyong |
description | Implementing federated learning (FL) algorithms in wireless networks has garnered a wide range of attention. However, few works have considered the impact of user mobility on the learning performance. To fill this research gap, we develop a theoretical model to characterize the hierarchical federated learning (HFL) algorithm in wireless networks where the mobile users may roam across edge access points (APs), leading to incompletion of inconsistent FL training. We provide the convergence analysis of conventional HFL with user mobility. Our analysis proves that the learning performance of conventional HFL deteriorates drastically with highly-mobile users. And such a decline in the learning performance will be exacerbated with small number of participants and large data distribution divergences among users' local data. To circumvent these issues, we propose a mobility-aware cluster federated learning (MACFL) algorithm by redesigning the access mechanism, local update rule, and model aggregation scheme. We also conduct experiments to evaluate the learning performance of conventional HFL, a cluster federated learning (CFL) with simple averaging, and our proposed MACFL. The results show that our MACFL can enhance the learning performance, especially for three different cases: ( i ) the case of users with non-independent and identically distributed (non-IID) data, ( ii ) the case of users with high mobility, and ( iii ) the case with a small number of users. |
doi_str_mv | 10.1109/TWC.2022.3166386 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2723900017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9759241</ieee_id><sourcerecordid>2723900017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-528e90c82f2d37d0fdba122a7caed4c862c13fddb93f65cc4ec5c968e192efe63</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKfvgi8FnzuTS5M2j6M4J059mewxZMlVM2s7k46x_96WDZ_uOL7fHfcRcsvohDGqHparcgIUYMKZlLyQZ2TEhChSgKw4H3ouUwa5vCRXMW4oZbkUYkReXtu1r313SKd7EzAp613sMCQzdBhMhy5ZoAmNbz4T3yRz3w-D_fLW1MnKB6wxxuQNu30bvuM1uahMHfHmVMfkY_a4LOfp4v3puZwuUss571IBBSpqC6jA8dzRyq0NAzC5NegyW0iwjFfOrRWvpLA2QyuskgUyBVih5GNyf9y7De3vDmOnN-0uNP1JDTlwRYfveooeKRvaGANWehv8jwkHzagelOlemR6U6ZOyPnJ3jHhE_MdVLhRkjP8BpRpoSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723900017</pqid></control><display><type>article</type><title>Mobility-Aware Cluster Federated Learning in Hierarchical Wireless Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Chenyuan ; Yang, Howard H. ; Hu, Deshun ; Zhao, Zhiwei ; Quek, Tony Q. S. ; Min, Geyong</creator><creatorcontrib>Feng, Chenyuan ; Yang, Howard H. ; Hu, Deshun ; Zhao, Zhiwei ; Quek, Tony Q. S. ; Min, Geyong</creatorcontrib><description><![CDATA[Implementing federated learning (FL) algorithms in wireless networks has garnered a wide range of attention. However, few works have considered the impact of user mobility on the learning performance. To fill this research gap, we develop a theoretical model to characterize the hierarchical federated learning (HFL) algorithm in wireless networks where the mobile users may roam across edge access points (APs), leading to incompletion of inconsistent FL training. We provide the convergence analysis of conventional HFL with user mobility. Our analysis proves that the learning performance of conventional HFL deteriorates drastically with highly-mobile users. And such a decline in the learning performance will be exacerbated with small number of participants and large data distribution divergences among users' local data. To circumvent these issues, we propose a mobility-aware cluster federated learning (MACFL) algorithm by redesigning the access mechanism, local update rule, and model aggregation scheme. We also conduct experiments to evaluate the learning performance of conventional HFL, a cluster federated learning (CFL) with simple averaging, and our proposed MACFL. The results show that our MACFL can enhance the learning performance, especially for three different cases: (<inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>) the case of users with non-independent and identically distributed (non-IID) data, (<inline-formula> <tex-math notation="LaTeX">ii </tex-math></inline-formula>) the case of users with high mobility, and (<inline-formula> <tex-math notation="LaTeX">iii </tex-math></inline-formula>) the case with a small number of users.]]></description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2022.3166386</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Clustering algorithms ; Clusters ; Collaborative work ; Convergence ; convergence analysis ; data heterogeneity ; Data models ; Federated learning ; Hierarchical federated learning ; Machine learning ; Performance evaluation ; Servers ; Training ; user mobility ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2022-10, Vol.21 (10), p.8441-8458</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-528e90c82f2d37d0fdba122a7caed4c862c13fddb93f65cc4ec5c968e192efe63</citedby><cites>FETCH-LOGICAL-c333t-528e90c82f2d37d0fdba122a7caed4c862c13fddb93f65cc4ec5c968e192efe63</cites><orcidid>0000-0003-1395-7314 ; 0000-0002-0256-2416 ; 0000-0001-5293-0558 ; 0000-0002-4037-3149 ; 0000-0002-8958-1985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9759241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9759241$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Chenyuan</creatorcontrib><creatorcontrib>Yang, Howard H.</creatorcontrib><creatorcontrib>Hu, Deshun</creatorcontrib><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Quek, Tony Q. S.</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><title>Mobility-Aware Cluster Federated Learning in Hierarchical Wireless Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description><![CDATA[Implementing federated learning (FL) algorithms in wireless networks has garnered a wide range of attention. However, few works have considered the impact of user mobility on the learning performance. To fill this research gap, we develop a theoretical model to characterize the hierarchical federated learning (HFL) algorithm in wireless networks where the mobile users may roam across edge access points (APs), leading to incompletion of inconsistent FL training. We provide the convergence analysis of conventional HFL with user mobility. Our analysis proves that the learning performance of conventional HFL deteriorates drastically with highly-mobile users. And such a decline in the learning performance will be exacerbated with small number of participants and large data distribution divergences among users' local data. To circumvent these issues, we propose a mobility-aware cluster federated learning (MACFL) algorithm by redesigning the access mechanism, local update rule, and model aggregation scheme. We also conduct experiments to evaluate the learning performance of conventional HFL, a cluster federated learning (CFL) with simple averaging, and our proposed MACFL. The results show that our MACFL can enhance the learning performance, especially for three different cases: (<inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>) the case of users with non-independent and identically distributed (non-IID) data, (<inline-formula> <tex-math notation="LaTeX">ii </tex-math></inline-formula>) the case of users with high mobility, and (<inline-formula> <tex-math notation="LaTeX">iii </tex-math></inline-formula>) the case with a small number of users.]]></description><subject>Algorithms</subject><subject>Clustering algorithms</subject><subject>Clusters</subject><subject>Collaborative work</subject><subject>Convergence</subject><subject>convergence analysis</subject><subject>data heterogeneity</subject><subject>Data models</subject><subject>Federated learning</subject><subject>Hierarchical federated learning</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Servers</subject><subject>Training</subject><subject>user mobility</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQh4MoOKfvgi8FnzuTS5M2j6M4J059mewxZMlVM2s7k46x_96WDZ_uOL7fHfcRcsvohDGqHparcgIUYMKZlLyQZ2TEhChSgKw4H3ouUwa5vCRXMW4oZbkUYkReXtu1r313SKd7EzAp613sMCQzdBhMhy5ZoAmNbz4T3yRz3w-D_fLW1MnKB6wxxuQNu30bvuM1uahMHfHmVMfkY_a4LOfp4v3puZwuUss571IBBSpqC6jA8dzRyq0NAzC5NegyW0iwjFfOrRWvpLA2QyuskgUyBVih5GNyf9y7De3vDmOnN-0uNP1JDTlwRYfveooeKRvaGANWehv8jwkHzagelOlemR6U6ZOyPnJ3jHhE_MdVLhRkjP8BpRpoSA</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Feng, Chenyuan</creator><creator>Yang, Howard H.</creator><creator>Hu, Deshun</creator><creator>Zhao, Zhiwei</creator><creator>Quek, Tony Q. S.</creator><creator>Min, Geyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid><orcidid>https://orcid.org/0000-0002-0256-2416</orcidid><orcidid>https://orcid.org/0000-0001-5293-0558</orcidid><orcidid>https://orcid.org/0000-0002-4037-3149</orcidid><orcidid>https://orcid.org/0000-0002-8958-1985</orcidid></search><sort><creationdate>202210</creationdate><title>Mobility-Aware Cluster Federated Learning in Hierarchical Wireless Networks</title><author>Feng, Chenyuan ; Yang, Howard H. ; Hu, Deshun ; Zhao, Zhiwei ; Quek, Tony Q. S. ; Min, Geyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-528e90c82f2d37d0fdba122a7caed4c862c13fddb93f65cc4ec5c968e192efe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clustering algorithms</topic><topic>Clusters</topic><topic>Collaborative work</topic><topic>Convergence</topic><topic>convergence analysis</topic><topic>data heterogeneity</topic><topic>Data models</topic><topic>Federated learning</topic><topic>Hierarchical federated learning</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Servers</topic><topic>Training</topic><topic>user mobility</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Chenyuan</creatorcontrib><creatorcontrib>Yang, Howard H.</creatorcontrib><creatorcontrib>Hu, Deshun</creatorcontrib><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Quek, Tony Q. S.</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Chenyuan</au><au>Yang, Howard H.</au><au>Hu, Deshun</au><au>Zhao, Zhiwei</au><au>Quek, Tony Q. S.</au><au>Min, Geyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobility-Aware Cluster Federated Learning in Hierarchical Wireless Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2022-10</date><risdate>2022</risdate><volume>21</volume><issue>10</issue><spage>8441</spage><epage>8458</epage><pages>8441-8458</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract><![CDATA[Implementing federated learning (FL) algorithms in wireless networks has garnered a wide range of attention. However, few works have considered the impact of user mobility on the learning performance. To fill this research gap, we develop a theoretical model to characterize the hierarchical federated learning (HFL) algorithm in wireless networks where the mobile users may roam across edge access points (APs), leading to incompletion of inconsistent FL training. We provide the convergence analysis of conventional HFL with user mobility. Our analysis proves that the learning performance of conventional HFL deteriorates drastically with highly-mobile users. And such a decline in the learning performance will be exacerbated with small number of participants and large data distribution divergences among users' local data. To circumvent these issues, we propose a mobility-aware cluster federated learning (MACFL) algorithm by redesigning the access mechanism, local update rule, and model aggregation scheme. We also conduct experiments to evaluate the learning performance of conventional HFL, a cluster federated learning (CFL) with simple averaging, and our proposed MACFL. The results show that our MACFL can enhance the learning performance, especially for three different cases: (<inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>) the case of users with non-independent and identically distributed (non-IID) data, (<inline-formula> <tex-math notation="LaTeX">ii </tex-math></inline-formula>) the case of users with high mobility, and (<inline-formula> <tex-math notation="LaTeX">iii </tex-math></inline-formula>) the case with a small number of users.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2022.3166386</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid><orcidid>https://orcid.org/0000-0002-0256-2416</orcidid><orcidid>https://orcid.org/0000-0001-5293-0558</orcidid><orcidid>https://orcid.org/0000-0002-4037-3149</orcidid><orcidid>https://orcid.org/0000-0002-8958-1985</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2022-10, Vol.21 (10), p.8441-8458 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_2723900017 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Clustering algorithms Clusters Collaborative work Convergence convergence analysis data heterogeneity Data models Federated learning Hierarchical federated learning Machine learning Performance evaluation Servers Training user mobility Wireless networks |
title | Mobility-Aware Cluster Federated Learning in Hierarchical Wireless Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobility-Aware%20Cluster%20Federated%20Learning%20in%20Hierarchical%20Wireless%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Feng,%20Chenyuan&rft.date=2022-10&rft.volume=21&rft.issue=10&rft.spage=8441&rft.epage=8458&rft.pages=8441-8458&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2022.3166386&rft_dat=%3Cproquest_RIE%3E2723900017%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723900017&rft_id=info:pmid/&rft_ieee_id=9759241&rfr_iscdi=true |