Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis
Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxyg...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2022-10, Vol.13 (39), p.1154-1155 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1155 |
---|---|
container_issue | 39 |
container_start_page | 1154 |
container_title | Chemical science (Cambridge) |
container_volume | 13 |
creator | Szczepaniak, Grzegorz Jeong, Jaepil Kapil, Kriti Dadashi-Silab, Sajjad Yerneni, Saigopalakrishna S Ratajczyk, Paulina Lathwal, Sushil Schild, Dirk J Das, Subha R Matyjaszewski, Krzysztof |
description | Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X-Cu
II
/L). The role of PC was to trigger and drive the polymerization, while X-Cu
II
/L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X-Cu
II
/L, generating Cu
I
/L activator and PC&z.rad;
+
. The ATRP ligand (L) used in excess then reduced the PC&z.rad;
+
, closing the photocatalytic cycle. The continuous reduction of X-Cu
II
/L back to Cu
I
/L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X-Cu
II
/L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤
≤ 4.01) in contrast to photo-ATRP (1.15 ≤
≤ 1.22) under identical conditions.
Fully oxygen-tolerant photoinduced atom transfer radical polymerization (photo-ATRP) allowed the synthesis of well-defined polymers using a Cu catalyst and eosin Y at ppm levels in both aqueous and organic media. |
doi_str_mv | 10.1039/d2sc04210j |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2723843836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723843836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-a45a03b073631766bc6c36efa1e45875e4f9217cd6e06c3d99b3e57bb0d3c3b63</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVoSUKaS-4phl5KwY2kkSz7UgjbbxYS2vQs9DG768VrOZIduv99lW66STMXDbzfPJ54hJwx-p5RaC48T44Kzuj6gBxzKlhZSWhe7HdOj8hpSmuaB4BJrg7JEVTA87E8JvOrAfvStLFYRsxb1y5XY-lje4d9cXnz47rA3tgOfWG3hZ9MVwyrMIaIPvy-cGEYMBbOjKbbpja9Ii8Xpkt4-vCekF-fP93Mvpbzqy_fZpfz0glej6UR0lCwVOUYTFWVdZWDCheGoZC1kigWDWfK-QppVnzTWECprKUeHNgKTsiHne8w2Q16h_0YTaeH2G5M3OpgWv2_0rcrvQx3upFScSGywdsHgxhuJ0yj3rTJYdeZHsOUNFfABFd1IzP65hm6DlPs8_cyxaEWUMN9onc7ysWQUsTFPgyj-r4n_ZH_nP3t6XuGXz-Nv0f_tZKB8x0Qk9urj0XDH4n1lxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723843836</pqid></control><display><type>article</type><title>Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Szczepaniak, Grzegorz ; Jeong, Jaepil ; Kapil, Kriti ; Dadashi-Silab, Sajjad ; Yerneni, Saigopalakrishna S ; Ratajczyk, Paulina ; Lathwal, Sushil ; Schild, Dirk J ; Das, Subha R ; Matyjaszewski, Krzysztof</creator><creatorcontrib>Szczepaniak, Grzegorz ; Jeong, Jaepil ; Kapil, Kriti ; Dadashi-Silab, Sajjad ; Yerneni, Saigopalakrishna S ; Ratajczyk, Paulina ; Lathwal, Sushil ; Schild, Dirk J ; Das, Subha R ; Matyjaszewski, Krzysztof</creatorcontrib><description>Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X-Cu
II
/L). The role of PC was to trigger and drive the polymerization, while X-Cu
II
/L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X-Cu
II
/L, generating Cu
I
/L activator and PC&z.rad;
+
. The ATRP ligand (L) used in excess then reduced the PC&z.rad;
+
, closing the photocatalytic cycle. The continuous reduction of X-Cu
II
/L back to Cu
I
/L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X-Cu
II
/L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤
≤ 4.01) in contrast to photo-ATRP (1.15 ≤
≤ 1.22) under identical conditions.
Fully oxygen-tolerant photoinduced atom transfer radical polymerization (photo-ATRP) allowed the synthesis of well-defined polymers using a Cu catalyst and eosin Y at ppm levels in both aqueous and organic media.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d2sc04210j</identifier><identifier>PMID: 36320395</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Addition polymerization ; Biocides ; Catalysis ; Catalysts ; Chain transfer ; Chemical synthesis ; Chemistry ; Copper ; Copper compounds ; Electron transfer ; Light irradiation ; Molecular weight distribution ; Oxygen ; Photoredox catalysis ; Polymer chemistry ; Polymerization ; Polymers ; Radicals ; Ultraviolet radiation</subject><ispartof>Chemical science (Cambridge), 2022-10, Vol.13 (39), p.1154-1155</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2022</rights><rights>This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-a45a03b073631766bc6c36efa1e45875e4f9217cd6e06c3d99b3e57bb0d3c3b63</citedby><cites>FETCH-LOGICAL-c428t-a45a03b073631766bc6c36efa1e45875e4f9217cd6e06c3d99b3e57bb0d3c3b63</cites><orcidid>0000-0003-0179-6023 ; 0000-0002-3437-2852 ; 0000-0002-4285-5846 ; 0000-0002-5353-0422 ; 0000-0002-0355-9542 ; 0000-0002-1453-0964 ; 0000-0003-1960-3402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557244/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557244/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36320395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szczepaniak, Grzegorz</creatorcontrib><creatorcontrib>Jeong, Jaepil</creatorcontrib><creatorcontrib>Kapil, Kriti</creatorcontrib><creatorcontrib>Dadashi-Silab, Sajjad</creatorcontrib><creatorcontrib>Yerneni, Saigopalakrishna S</creatorcontrib><creatorcontrib>Ratajczyk, Paulina</creatorcontrib><creatorcontrib>Lathwal, Sushil</creatorcontrib><creatorcontrib>Schild, Dirk J</creatorcontrib><creatorcontrib>Das, Subha R</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><title>Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X-Cu
II
/L). The role of PC was to trigger and drive the polymerization, while X-Cu
II
/L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X-Cu
II
/L, generating Cu
I
/L activator and PC&z.rad;
+
. The ATRP ligand (L) used in excess then reduced the PC&z.rad;
+
, closing the photocatalytic cycle. The continuous reduction of X-Cu
II
/L back to Cu
I
/L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X-Cu
II
/L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤
≤ 4.01) in contrast to photo-ATRP (1.15 ≤
≤ 1.22) under identical conditions.
Fully oxygen-tolerant photoinduced atom transfer radical polymerization (photo-ATRP) allowed the synthesis of well-defined polymers using a Cu catalyst and eosin Y at ppm levels in both aqueous and organic media.</description><subject>Addition polymerization</subject><subject>Biocides</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chain transfer</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Copper</subject><subject>Copper compounds</subject><subject>Electron transfer</subject><subject>Light irradiation</subject><subject>Molecular weight distribution</subject><subject>Oxygen</subject><subject>Photoredox catalysis</subject><subject>Polymer chemistry</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Radicals</subject><subject>Ultraviolet radiation</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc1r3DAQxUVoSUKaS-4phl5KwY2kkSz7UgjbbxYS2vQs9DG768VrOZIduv99lW66STMXDbzfPJ54hJwx-p5RaC48T44Kzuj6gBxzKlhZSWhe7HdOj8hpSmuaB4BJrg7JEVTA87E8JvOrAfvStLFYRsxb1y5XY-lje4d9cXnz47rA3tgOfWG3hZ9MVwyrMIaIPvy-cGEYMBbOjKbbpja9Ii8Xpkt4-vCekF-fP93Mvpbzqy_fZpfz0glej6UR0lCwVOUYTFWVdZWDCheGoZC1kigWDWfK-QppVnzTWECprKUeHNgKTsiHne8w2Q16h_0YTaeH2G5M3OpgWv2_0rcrvQx3upFScSGywdsHgxhuJ0yj3rTJYdeZHsOUNFfABFd1IzP65hm6DlPs8_cyxaEWUMN9onc7ysWQUsTFPgyj-r4n_ZH_nP3t6XuGXz-Nv0f_tZKB8x0Qk9urj0XDH4n1lxw</recordid><startdate>20221012</startdate><enddate>20221012</enddate><creator>Szczepaniak, Grzegorz</creator><creator>Jeong, Jaepil</creator><creator>Kapil, Kriti</creator><creator>Dadashi-Silab, Sajjad</creator><creator>Yerneni, Saigopalakrishna S</creator><creator>Ratajczyk, Paulina</creator><creator>Lathwal, Sushil</creator><creator>Schild, Dirk J</creator><creator>Das, Subha R</creator><creator>Matyjaszewski, Krzysztof</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0179-6023</orcidid><orcidid>https://orcid.org/0000-0002-3437-2852</orcidid><orcidid>https://orcid.org/0000-0002-4285-5846</orcidid><orcidid>https://orcid.org/0000-0002-5353-0422</orcidid><orcidid>https://orcid.org/0000-0002-0355-9542</orcidid><orcidid>https://orcid.org/0000-0002-1453-0964</orcidid><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid></search><sort><creationdate>20221012</creationdate><title>Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis</title><author>Szczepaniak, Grzegorz ; Jeong, Jaepil ; Kapil, Kriti ; Dadashi-Silab, Sajjad ; Yerneni, Saigopalakrishna S ; Ratajczyk, Paulina ; Lathwal, Sushil ; Schild, Dirk J ; Das, Subha R ; Matyjaszewski, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-a45a03b073631766bc6c36efa1e45875e4f9217cd6e06c3d99b3e57bb0d3c3b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Addition polymerization</topic><topic>Biocides</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chain transfer</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Copper</topic><topic>Copper compounds</topic><topic>Electron transfer</topic><topic>Light irradiation</topic><topic>Molecular weight distribution</topic><topic>Oxygen</topic><topic>Photoredox catalysis</topic><topic>Polymer chemistry</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Radicals</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szczepaniak, Grzegorz</creatorcontrib><creatorcontrib>Jeong, Jaepil</creatorcontrib><creatorcontrib>Kapil, Kriti</creatorcontrib><creatorcontrib>Dadashi-Silab, Sajjad</creatorcontrib><creatorcontrib>Yerneni, Saigopalakrishna S</creatorcontrib><creatorcontrib>Ratajczyk, Paulina</creatorcontrib><creatorcontrib>Lathwal, Sushil</creatorcontrib><creatorcontrib>Schild, Dirk J</creatorcontrib><creatorcontrib>Das, Subha R</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szczepaniak, Grzegorz</au><au>Jeong, Jaepil</au><au>Kapil, Kriti</au><au>Dadashi-Silab, Sajjad</au><au>Yerneni, Saigopalakrishna S</au><au>Ratajczyk, Paulina</au><au>Lathwal, Sushil</au><au>Schild, Dirk J</au><au>Das, Subha R</au><au>Matyjaszewski, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2022-10-12</date><risdate>2022</risdate><volume>13</volume><issue>39</issue><spage>1154</spage><epage>1155</epage><pages>1154-1155</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X-Cu
II
/L). The role of PC was to trigger and drive the polymerization, while X-Cu
II
/L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X-Cu
II
/L, generating Cu
I
/L activator and PC&z.rad;
+
. The ATRP ligand (L) used in excess then reduced the PC&z.rad;
+
, closing the photocatalytic cycle. The continuous reduction of X-Cu
II
/L back to Cu
I
/L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X-Cu
II
/L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤
≤ 4.01) in contrast to photo-ATRP (1.15 ≤
≤ 1.22) under identical conditions.
Fully oxygen-tolerant photoinduced atom transfer radical polymerization (photo-ATRP) allowed the synthesis of well-defined polymers using a Cu catalyst and eosin Y at ppm levels in both aqueous and organic media.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36320395</pmid><doi>10.1039/d2sc04210j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0179-6023</orcidid><orcidid>https://orcid.org/0000-0002-3437-2852</orcidid><orcidid>https://orcid.org/0000-0002-4285-5846</orcidid><orcidid>https://orcid.org/0000-0002-5353-0422</orcidid><orcidid>https://orcid.org/0000-0002-0355-9542</orcidid><orcidid>https://orcid.org/0000-0002-1453-0964</orcidid><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2022-10, Vol.13 (39), p.1154-1155 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_proquest_journals_2723843836 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Addition polymerization Biocides Catalysis Catalysts Chain transfer Chemical synthesis Chemistry Copper Copper compounds Electron transfer Light irradiation Molecular weight distribution Oxygen Photoredox catalysis Polymer chemistry Polymerization Polymers Radicals Ultraviolet radiation |
title | Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T05%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open-air%20green-light-driven%20ATRP%20enabled%20by%20dual%20photoredox/copper%20catalysis&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Szczepaniak,%20Grzegorz&rft.date=2022-10-12&rft.volume=13&rft.issue=39&rft.spage=1154&rft.epage=1155&rft.pages=1154-1155&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d2sc04210j&rft_dat=%3Cproquest_pubme%3E2723843836%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723843836&rft_id=info:pmid/36320395&rfr_iscdi=true |