Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis

Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxyg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2022-10, Vol.13 (39), p.1154-1155
Hauptverfasser: Szczepaniak, Grzegorz, Jeong, Jaepil, Kapil, Kriti, Dadashi-Silab, Sajjad, Yerneni, Saigopalakrishna S, Ratajczyk, Paulina, Lathwal, Sushil, Schild, Dirk J, Das, Subha R, Matyjaszewski, Krzysztof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1155
container_issue 39
container_start_page 1154
container_title Chemical science (Cambridge)
container_volume 13
creator Szczepaniak, Grzegorz
Jeong, Jaepil
Kapil, Kriti
Dadashi-Silab, Sajjad
Yerneni, Saigopalakrishna S
Ratajczyk, Paulina
Lathwal, Sushil
Schild, Dirk J
Das, Subha R
Matyjaszewski, Krzysztof
description Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X-Cu II /L). The role of PC was to trigger and drive the polymerization, while X-Cu II /L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X-Cu II /L, generating Cu I /L activator and PC&z.rad; + . The ATRP ligand (L) used in excess then reduced the PC&z.rad; + , closing the photocatalytic cycle. The continuous reduction of X-Cu II /L back to Cu I /L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X-Cu II /L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ ≤ 1.22) under identical conditions. Fully oxygen-tolerant photoinduced atom transfer radical polymerization (photo-ATRP) allowed the synthesis of well-defined polymers using a Cu catalyst and eosin Y at ppm levels in both aqueous and organic media.
doi_str_mv 10.1039/d2sc04210j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2723843836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723843836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-a45a03b073631766bc6c36efa1e45875e4f9217cd6e06c3d99b3e57bb0d3c3b63</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVoSUKaS-4phl5KwY2kkSz7UgjbbxYS2vQs9DG768VrOZIduv99lW66STMXDbzfPJ54hJwx-p5RaC48T44Kzuj6gBxzKlhZSWhe7HdOj8hpSmuaB4BJrg7JEVTA87E8JvOrAfvStLFYRsxb1y5XY-lje4d9cXnz47rA3tgOfWG3hZ9MVwyrMIaIPvy-cGEYMBbOjKbbpja9Ii8Xpkt4-vCekF-fP93Mvpbzqy_fZpfz0glej6UR0lCwVOUYTFWVdZWDCheGoZC1kigWDWfK-QppVnzTWECprKUeHNgKTsiHne8w2Q16h_0YTaeH2G5M3OpgWv2_0rcrvQx3upFScSGywdsHgxhuJ0yj3rTJYdeZHsOUNFfABFd1IzP65hm6DlPs8_cyxaEWUMN9onc7ysWQUsTFPgyj-r4n_ZH_nP3t6XuGXz-Nv0f_tZKB8x0Qk9urj0XDH4n1lxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723843836</pqid></control><display><type>article</type><title>Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Szczepaniak, Grzegorz ; Jeong, Jaepil ; Kapil, Kriti ; Dadashi-Silab, Sajjad ; Yerneni, Saigopalakrishna S ; Ratajczyk, Paulina ; Lathwal, Sushil ; Schild, Dirk J ; Das, Subha R ; Matyjaszewski, Krzysztof</creator><creatorcontrib>Szczepaniak, Grzegorz ; Jeong, Jaepil ; Kapil, Kriti ; Dadashi-Silab, Sajjad ; Yerneni, Saigopalakrishna S ; Ratajczyk, Paulina ; Lathwal, Sushil ; Schild, Dirk J ; Das, Subha R ; Matyjaszewski, Krzysztof</creatorcontrib><description>Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X-Cu II /L). The role of PC was to trigger and drive the polymerization, while X-Cu II /L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X-Cu II /L, generating Cu I /L activator and PC&amp;z.rad; + . The ATRP ligand (L) used in excess then reduced the PC&amp;z.rad; + , closing the photocatalytic cycle. The continuous reduction of X-Cu II /L back to Cu I /L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X-Cu II /L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ ≤ 1.22) under identical conditions. Fully oxygen-tolerant photoinduced atom transfer radical polymerization (photo-ATRP) allowed the synthesis of well-defined polymers using a Cu catalyst and eosin Y at ppm levels in both aqueous and organic media.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d2sc04210j</identifier><identifier>PMID: 36320395</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Addition polymerization ; Biocides ; Catalysis ; Catalysts ; Chain transfer ; Chemical synthesis ; Chemistry ; Copper ; Copper compounds ; Electron transfer ; Light irradiation ; Molecular weight distribution ; Oxygen ; Photoredox catalysis ; Polymer chemistry ; Polymerization ; Polymers ; Radicals ; Ultraviolet radiation</subject><ispartof>Chemical science (Cambridge), 2022-10, Vol.13 (39), p.1154-1155</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2022</rights><rights>This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-a45a03b073631766bc6c36efa1e45875e4f9217cd6e06c3d99b3e57bb0d3c3b63</citedby><cites>FETCH-LOGICAL-c428t-a45a03b073631766bc6c36efa1e45875e4f9217cd6e06c3d99b3e57bb0d3c3b63</cites><orcidid>0000-0003-0179-6023 ; 0000-0002-3437-2852 ; 0000-0002-4285-5846 ; 0000-0002-5353-0422 ; 0000-0002-0355-9542 ; 0000-0002-1453-0964 ; 0000-0003-1960-3402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557244/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557244/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36320395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szczepaniak, Grzegorz</creatorcontrib><creatorcontrib>Jeong, Jaepil</creatorcontrib><creatorcontrib>Kapil, Kriti</creatorcontrib><creatorcontrib>Dadashi-Silab, Sajjad</creatorcontrib><creatorcontrib>Yerneni, Saigopalakrishna S</creatorcontrib><creatorcontrib>Ratajczyk, Paulina</creatorcontrib><creatorcontrib>Lathwal, Sushil</creatorcontrib><creatorcontrib>Schild, Dirk J</creatorcontrib><creatorcontrib>Das, Subha R</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><title>Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X-Cu II /L). The role of PC was to trigger and drive the polymerization, while X-Cu II /L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X-Cu II /L, generating Cu I /L activator and PC&amp;z.rad; + . The ATRP ligand (L) used in excess then reduced the PC&amp;z.rad; + , closing the photocatalytic cycle. The continuous reduction of X-Cu II /L back to Cu I /L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X-Cu II /L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ ≤ 1.22) under identical conditions. Fully oxygen-tolerant photoinduced atom transfer radical polymerization (photo-ATRP) allowed the synthesis of well-defined polymers using a Cu catalyst and eosin Y at ppm levels in both aqueous and organic media.</description><subject>Addition polymerization</subject><subject>Biocides</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chain transfer</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Copper</subject><subject>Copper compounds</subject><subject>Electron transfer</subject><subject>Light irradiation</subject><subject>Molecular weight distribution</subject><subject>Oxygen</subject><subject>Photoredox catalysis</subject><subject>Polymer chemistry</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Radicals</subject><subject>Ultraviolet radiation</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc1r3DAQxUVoSUKaS-4phl5KwY2kkSz7UgjbbxYS2vQs9DG768VrOZIduv99lW66STMXDbzfPJ54hJwx-p5RaC48T44Kzuj6gBxzKlhZSWhe7HdOj8hpSmuaB4BJrg7JEVTA87E8JvOrAfvStLFYRsxb1y5XY-lje4d9cXnz47rA3tgOfWG3hZ9MVwyrMIaIPvy-cGEYMBbOjKbbpja9Ii8Xpkt4-vCekF-fP93Mvpbzqy_fZpfz0glej6UR0lCwVOUYTFWVdZWDCheGoZC1kigWDWfK-QppVnzTWECprKUeHNgKTsiHne8w2Q16h_0YTaeH2G5M3OpgWv2_0rcrvQx3upFScSGywdsHgxhuJ0yj3rTJYdeZHsOUNFfABFd1IzP65hm6DlPs8_cyxaEWUMN9onc7ysWQUsTFPgyj-r4n_ZH_nP3t6XuGXz-Nv0f_tZKB8x0Qk9urj0XDH4n1lxw</recordid><startdate>20221012</startdate><enddate>20221012</enddate><creator>Szczepaniak, Grzegorz</creator><creator>Jeong, Jaepil</creator><creator>Kapil, Kriti</creator><creator>Dadashi-Silab, Sajjad</creator><creator>Yerneni, Saigopalakrishna S</creator><creator>Ratajczyk, Paulina</creator><creator>Lathwal, Sushil</creator><creator>Schild, Dirk J</creator><creator>Das, Subha R</creator><creator>Matyjaszewski, Krzysztof</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0179-6023</orcidid><orcidid>https://orcid.org/0000-0002-3437-2852</orcidid><orcidid>https://orcid.org/0000-0002-4285-5846</orcidid><orcidid>https://orcid.org/0000-0002-5353-0422</orcidid><orcidid>https://orcid.org/0000-0002-0355-9542</orcidid><orcidid>https://orcid.org/0000-0002-1453-0964</orcidid><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid></search><sort><creationdate>20221012</creationdate><title>Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis</title><author>Szczepaniak, Grzegorz ; Jeong, Jaepil ; Kapil, Kriti ; Dadashi-Silab, Sajjad ; Yerneni, Saigopalakrishna S ; Ratajczyk, Paulina ; Lathwal, Sushil ; Schild, Dirk J ; Das, Subha R ; Matyjaszewski, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-a45a03b073631766bc6c36efa1e45875e4f9217cd6e06c3d99b3e57bb0d3c3b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Addition polymerization</topic><topic>Biocides</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chain transfer</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Copper</topic><topic>Copper compounds</topic><topic>Electron transfer</topic><topic>Light irradiation</topic><topic>Molecular weight distribution</topic><topic>Oxygen</topic><topic>Photoredox catalysis</topic><topic>Polymer chemistry</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Radicals</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szczepaniak, Grzegorz</creatorcontrib><creatorcontrib>Jeong, Jaepil</creatorcontrib><creatorcontrib>Kapil, Kriti</creatorcontrib><creatorcontrib>Dadashi-Silab, Sajjad</creatorcontrib><creatorcontrib>Yerneni, Saigopalakrishna S</creatorcontrib><creatorcontrib>Ratajczyk, Paulina</creatorcontrib><creatorcontrib>Lathwal, Sushil</creatorcontrib><creatorcontrib>Schild, Dirk J</creatorcontrib><creatorcontrib>Das, Subha R</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szczepaniak, Grzegorz</au><au>Jeong, Jaepil</au><au>Kapil, Kriti</au><au>Dadashi-Silab, Sajjad</au><au>Yerneni, Saigopalakrishna S</au><au>Ratajczyk, Paulina</au><au>Lathwal, Sushil</au><au>Schild, Dirk J</au><au>Das, Subha R</au><au>Matyjaszewski, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2022-10-12</date><risdate>2022</risdate><volume>13</volume><issue>39</issue><spage>1154</spage><epage>1155</epage><pages>1154-1155</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X-Cu II /L). The role of PC was to trigger and drive the polymerization, while X-Cu II /L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X-Cu II /L, generating Cu I /L activator and PC&amp;z.rad; + . The ATRP ligand (L) used in excess then reduced the PC&amp;z.rad; + , closing the photocatalytic cycle. The continuous reduction of X-Cu II /L back to Cu I /L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X-Cu II /L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ ≤ 1.22) under identical conditions. Fully oxygen-tolerant photoinduced atom transfer radical polymerization (photo-ATRP) allowed the synthesis of well-defined polymers using a Cu catalyst and eosin Y at ppm levels in both aqueous and organic media.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36320395</pmid><doi>10.1039/d2sc04210j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0179-6023</orcidid><orcidid>https://orcid.org/0000-0002-3437-2852</orcidid><orcidid>https://orcid.org/0000-0002-4285-5846</orcidid><orcidid>https://orcid.org/0000-0002-5353-0422</orcidid><orcidid>https://orcid.org/0000-0002-0355-9542</orcidid><orcidid>https://orcid.org/0000-0002-1453-0964</orcidid><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2022-10, Vol.13 (39), p.1154-1155
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_journals_2723843836
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Addition polymerization
Biocides
Catalysis
Catalysts
Chain transfer
Chemical synthesis
Chemistry
Copper
Copper compounds
Electron transfer
Light irradiation
Molecular weight distribution
Oxygen
Photoredox catalysis
Polymer chemistry
Polymerization
Polymers
Radicals
Ultraviolet radiation
title Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T05%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open-air%20green-light-driven%20ATRP%20enabled%20by%20dual%20photoredox/copper%20catalysis&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Szczepaniak,%20Grzegorz&rft.date=2022-10-12&rft.volume=13&rft.issue=39&rft.spage=1154&rft.epage=1155&rft.pages=1154-1155&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d2sc04210j&rft_dat=%3Cproquest_pubme%3E2723843836%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723843836&rft_id=info:pmid/36320395&rfr_iscdi=true