Completely suppressed high-voltage phase transition of P2/O3-Na0.7Li0.1Ni0.1Fe0.2Mn0.6O2via Li/Ni co-doping for sodium storage
P2-type Fe, Mn-based layered oxides have been potential cathode materials for sodium-ion batteries (SIBs), yet suffer from their intrinsic sluggish kinetics and structural instability due to the adverse P2–Z high-voltage phase transition. An improvement strategy by either single-cation doping or co-...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry frontiers 2022-10, Vol.9 (20), p.5231-5239 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5239 |
---|---|
container_issue | 20 |
container_start_page | 5231 |
container_title | Inorganic chemistry frontiers |
container_volume | 9 |
creator | Wang, Yunpeng Yan, Mengmeng Xu, Kang Yu-Xin, Chang Guo, Jin Wang, Qinghua Wang, Bin Wang, Duan Ya-Xia, Yin Xu, Sailong |
description | P2-type Fe, Mn-based layered oxides have been potential cathode materials for sodium-ion batteries (SIBs), yet suffer from their intrinsic sluggish kinetics and structural instability due to the adverse P2–Z high-voltage phase transition. An improvement strategy by either single-cation doping or co-doping is used, but typically with either a lowered reversible capacity or partially suppressed high-voltage phase transition. In this study, a novel biphasic P2/O3-Na0.7Li0.1Ni0.1Fe0.2Mn0.6O2 cathode was prepared, with the high-voltage phase transition completely suppressed via Li/Ni co-doping. Inactive Li+ stabilizes the structure and active Ni2+ improves the electrical conductivity, while the P2/O3 intergrown structure induced by co-doping further limits the lattice stress during cycling. The resulting cathode exhibits an outstanding rate capability (102.2 mA h g−1 at 0.1C and 59.8 mA h g−1 at 10C), and an excellent cyclic stability (74.6% capacity retention after 500 cycles at 10C). The reaction kinetics and structural evolution demonstrate high Na+ diffusion coefficient and the complete suppression of the Z phase transition, respectively, both of which underpin the enhancement. The results highlight that the synergistic effect between Li/Ni co-doping and accompanying biphasic structure promises an effective improvement strategy to develop high-performance Fe, Mn-based and Co-free layered cathode materials for SIBs. |
doi_str_mv | 10.1039/d2qi01018f |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2723721104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723721104</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-3ed95be158afb295f2d59b3ad3bd64022eaa1afb2c633c9f1b5da20d4dfce2603</originalsourceid><addsrcrecordid>eNo9jcFLwzAYxYMoOOYu_gUBz-2-fGna9SjD6aBuHvQ80ibZIl2TNenAi3-7HYqX9x7vwe8Rcs8gZcDLucKTBQZsYa7IBEFgwoTg1_85E7dkFoKtYSygZFBMyPfSHX2ro26_aBi873UIWtGD3R-Ss2uj3GvqDzJoGnvZBRut66gz9A3nW55sJKRFZcf_zUVWGlJ87SDNt3i2klZ2vrG0cYly3nZ7alxPg1N2ONIQXT-y78iNkW3Qsz-fko_V0_vyJam2z-vlY5V4tuAx4VqVotZMLKSpsRQGlShrLhWvVZ4BopaSXaYm57wpDauFkggqU6bRmAOfkodfru_dadAh7j7d0Hfj5Q4L5AUyBhn_AQtjX9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723721104</pqid></control><display><type>article</type><title>Completely suppressed high-voltage phase transition of P2/O3-Na0.7Li0.1Ni0.1Fe0.2Mn0.6O2via Li/Ni co-doping for sodium storage</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Yunpeng ; Yan, Mengmeng ; Xu, Kang ; Yu-Xin, Chang ; Guo, Jin ; Wang, Qinghua ; Wang, Bin ; Wang, Duan ; Ya-Xia, Yin ; Xu, Sailong</creator><creatorcontrib>Wang, Yunpeng ; Yan, Mengmeng ; Xu, Kang ; Yu-Xin, Chang ; Guo, Jin ; Wang, Qinghua ; Wang, Bin ; Wang, Duan ; Ya-Xia, Yin ; Xu, Sailong</creatorcontrib><description>P2-type Fe, Mn-based layered oxides have been potential cathode materials for sodium-ion batteries (SIBs), yet suffer from their intrinsic sluggish kinetics and structural instability due to the adverse P2–Z high-voltage phase transition. An improvement strategy by either single-cation doping or co-doping is used, but typically with either a lowered reversible capacity or partially suppressed high-voltage phase transition. In this study, a novel biphasic P2/O3-Na0.7Li0.1Ni0.1Fe0.2Mn0.6O2 cathode was prepared, with the high-voltage phase transition completely suppressed via Li/Ni co-doping. Inactive Li+ stabilizes the structure and active Ni2+ improves the electrical conductivity, while the P2/O3 intergrown structure induced by co-doping further limits the lattice stress during cycling. The resulting cathode exhibits an outstanding rate capability (102.2 mA h g−1 at 0.1C and 59.8 mA h g−1 at 10C), and an excellent cyclic stability (74.6% capacity retention after 500 cycles at 10C). The reaction kinetics and structural evolution demonstrate high Na+ diffusion coefficient and the complete suppression of the Z phase transition, respectively, both of which underpin the enhancement. The results highlight that the synergistic effect between Li/Ni co-doping and accompanying biphasic structure promises an effective improvement strategy to develop high-performance Fe, Mn-based and Co-free layered cathode materials for SIBs.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d2qi01018f</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Cathodes ; Diffusion coefficient ; Doping ; Electrical resistivity ; Electrode materials ; High voltages ; Manganese ; Nickel ; Phase transitions ; Reaction kinetics ; Sodium ; Sodium-ion batteries ; Structural stability ; Synergistic effect</subject><ispartof>Inorganic chemistry frontiers, 2022-10, Vol.9 (20), p.5231-5239</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yunpeng</creatorcontrib><creatorcontrib>Yan, Mengmeng</creatorcontrib><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>Yu-Xin, Chang</creatorcontrib><creatorcontrib>Guo, Jin</creatorcontrib><creatorcontrib>Wang, Qinghua</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Wang, Duan</creatorcontrib><creatorcontrib>Ya-Xia, Yin</creatorcontrib><creatorcontrib>Xu, Sailong</creatorcontrib><title>Completely suppressed high-voltage phase transition of P2/O3-Na0.7Li0.1Ni0.1Fe0.2Mn0.6O2via Li/Ni co-doping for sodium storage</title><title>Inorganic chemistry frontiers</title><description>P2-type Fe, Mn-based layered oxides have been potential cathode materials for sodium-ion batteries (SIBs), yet suffer from their intrinsic sluggish kinetics and structural instability due to the adverse P2–Z high-voltage phase transition. An improvement strategy by either single-cation doping or co-doping is used, but typically with either a lowered reversible capacity or partially suppressed high-voltage phase transition. In this study, a novel biphasic P2/O3-Na0.7Li0.1Ni0.1Fe0.2Mn0.6O2 cathode was prepared, with the high-voltage phase transition completely suppressed via Li/Ni co-doping. Inactive Li+ stabilizes the structure and active Ni2+ improves the electrical conductivity, while the P2/O3 intergrown structure induced by co-doping further limits the lattice stress during cycling. The resulting cathode exhibits an outstanding rate capability (102.2 mA h g−1 at 0.1C and 59.8 mA h g−1 at 10C), and an excellent cyclic stability (74.6% capacity retention after 500 cycles at 10C). The reaction kinetics and structural evolution demonstrate high Na+ diffusion coefficient and the complete suppression of the Z phase transition, respectively, both of which underpin the enhancement. The results highlight that the synergistic effect between Li/Ni co-doping and accompanying biphasic structure promises an effective improvement strategy to develop high-performance Fe, Mn-based and Co-free layered cathode materials for SIBs.</description><subject>Cathodes</subject><subject>Diffusion coefficient</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>High voltages</subject><subject>Manganese</subject><subject>Nickel</subject><subject>Phase transitions</subject><subject>Reaction kinetics</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Structural stability</subject><subject>Synergistic effect</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9jcFLwzAYxYMoOOYu_gUBz-2-fGna9SjD6aBuHvQ80ibZIl2TNenAi3-7HYqX9x7vwe8Rcs8gZcDLucKTBQZsYa7IBEFgwoTg1_85E7dkFoKtYSygZFBMyPfSHX2ro26_aBi873UIWtGD3R-Ss2uj3GvqDzJoGnvZBRut66gz9A3nW55sJKRFZcf_zUVWGlJ87SDNt3i2klZ2vrG0cYly3nZ7alxPg1N2ONIQXT-y78iNkW3Qsz-fko_V0_vyJam2z-vlY5V4tuAx4VqVotZMLKSpsRQGlShrLhWvVZ4BopaSXaYm57wpDauFkggqU6bRmAOfkodfru_dadAh7j7d0Hfj5Q4L5AUyBhn_AQtjX9U</recordid><startdate>20221012</startdate><enddate>20221012</enddate><creator>Wang, Yunpeng</creator><creator>Yan, Mengmeng</creator><creator>Xu, Kang</creator><creator>Yu-Xin, Chang</creator><creator>Guo, Jin</creator><creator>Wang, Qinghua</creator><creator>Wang, Bin</creator><creator>Wang, Duan</creator><creator>Ya-Xia, Yin</creator><creator>Xu, Sailong</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20221012</creationdate><title>Completely suppressed high-voltage phase transition of P2/O3-Na0.7Li0.1Ni0.1Fe0.2Mn0.6O2via Li/Ni co-doping for sodium storage</title><author>Wang, Yunpeng ; Yan, Mengmeng ; Xu, Kang ; Yu-Xin, Chang ; Guo, Jin ; Wang, Qinghua ; Wang, Bin ; Wang, Duan ; Ya-Xia, Yin ; Xu, Sailong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-3ed95be158afb295f2d59b3ad3bd64022eaa1afb2c633c9f1b5da20d4dfce2603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Diffusion coefficient</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>High voltages</topic><topic>Manganese</topic><topic>Nickel</topic><topic>Phase transitions</topic><topic>Reaction kinetics</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Structural stability</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yunpeng</creatorcontrib><creatorcontrib>Yan, Mengmeng</creatorcontrib><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>Yu-Xin, Chang</creatorcontrib><creatorcontrib>Guo, Jin</creatorcontrib><creatorcontrib>Wang, Qinghua</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Wang, Duan</creatorcontrib><creatorcontrib>Ya-Xia, Yin</creatorcontrib><creatorcontrib>Xu, Sailong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yunpeng</au><au>Yan, Mengmeng</au><au>Xu, Kang</au><au>Yu-Xin, Chang</au><au>Guo, Jin</au><au>Wang, Qinghua</au><au>Wang, Bin</au><au>Wang, Duan</au><au>Ya-Xia, Yin</au><au>Xu, Sailong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completely suppressed high-voltage phase transition of P2/O3-Na0.7Li0.1Ni0.1Fe0.2Mn0.6O2via Li/Ni co-doping for sodium storage</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2022-10-12</date><risdate>2022</risdate><volume>9</volume><issue>20</issue><spage>5231</spage><epage>5239</epage><pages>5231-5239</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>P2-type Fe, Mn-based layered oxides have been potential cathode materials for sodium-ion batteries (SIBs), yet suffer from their intrinsic sluggish kinetics and structural instability due to the adverse P2–Z high-voltage phase transition. An improvement strategy by either single-cation doping or co-doping is used, but typically with either a lowered reversible capacity or partially suppressed high-voltage phase transition. In this study, a novel biphasic P2/O3-Na0.7Li0.1Ni0.1Fe0.2Mn0.6O2 cathode was prepared, with the high-voltage phase transition completely suppressed via Li/Ni co-doping. Inactive Li+ stabilizes the structure and active Ni2+ improves the electrical conductivity, while the P2/O3 intergrown structure induced by co-doping further limits the lattice stress during cycling. The resulting cathode exhibits an outstanding rate capability (102.2 mA h g−1 at 0.1C and 59.8 mA h g−1 at 10C), and an excellent cyclic stability (74.6% capacity retention after 500 cycles at 10C). The reaction kinetics and structural evolution demonstrate high Na+ diffusion coefficient and the complete suppression of the Z phase transition, respectively, both of which underpin the enhancement. The results highlight that the synergistic effect between Li/Ni co-doping and accompanying biphasic structure promises an effective improvement strategy to develop high-performance Fe, Mn-based and Co-free layered cathode materials for SIBs.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2qi01018f</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-1545 |
ispartof | Inorganic chemistry frontiers, 2022-10, Vol.9 (20), p.5231-5239 |
issn | 2052-1545 2052-1553 |
language | eng |
recordid | cdi_proquest_journals_2723721104 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Cathodes Diffusion coefficient Doping Electrical resistivity Electrode materials High voltages Manganese Nickel Phase transitions Reaction kinetics Sodium Sodium-ion batteries Structural stability Synergistic effect |
title | Completely suppressed high-voltage phase transition of P2/O3-Na0.7Li0.1Ni0.1Fe0.2Mn0.6O2via Li/Ni co-doping for sodium storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completely%20suppressed%20high-voltage%20phase%20transition%20of%20P2/O3-Na0.7Li0.1Ni0.1Fe0.2Mn0.6O2via%20Li/Ni%20co-doping%20for%20sodium%20storage&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Wang,%20Yunpeng&rft.date=2022-10-12&rft.volume=9&rft.issue=20&rft.spage=5231&rft.epage=5239&rft.pages=5231-5239&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d2qi01018f&rft_dat=%3Cproquest%3E2723721104%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723721104&rft_id=info:pmid/&rfr_iscdi=true |