Physical and chemical mechanisms that impact the detection, identification, and quantification of organic matter and the survival of microorganisms on the Martian surface – a review
The iconic Viking Landers that landed on Mars in 1976 demonstrated that the Martian surface is an extreme place, dominated by high UV fluxes and regolith chemistry capable of oxidizing organic molecules. From follow-on missions, we have learned that Mars was much warmer and wetter in its early histo...
Gespeichert in:
Veröffentlicht in: | International journal of astrobiology 2022-10, Vol.21 (5), p.356-379 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 5 |
container_start_page | 356 |
container_title | International journal of astrobiology |
container_volume | 21 |
creator | Bak, Ebbe Norskov Nørnberg, Per Jensen, Svend J. Knak Thøgersen, Jan Finster, Kai |
description | The iconic Viking Landers that landed on Mars in 1976 demonstrated that the Martian surface is an extreme place, dominated by high UV fluxes and regolith chemistry capable of oxidizing organic molecules. From follow-on missions, we have learned that Mars was much warmer and wetter in its early history, and even some areas of Mars (such as crater lakes, possibly with sustained hydrothermal activity) were habitable places (e.g. Grotzinger et al. (2014). Science (New York, N.Y.) 343; Mangold et al. (2021). Science (New York, N.Y.). However, based on the Viking results we have learnt that the search for life and its remains is challenged by abiotic breakdown and alteration of organic material. In particular, the harsh radiation climate at the Martian surface that directly and indirectly could degrade organics has been held accountable for the lack of organics in the Martian regolith. Recent work simulating wind-driven erosion of basalts under Mars-like conditions has shown that this process, comparable to UV- and ionizing radiation, produces reactive compounds, kills microbes and removes methane from the atmosphere. and thereby could equally jeopardize the success of life-seeking missions to Mars. In this review, we summarize and discuss previous work on the role of physical and chemical mechanisms that affect the persistence of organics, and their consequences for the detection of life and/or its signatures in the Martian regolith and in the atmosphere. |
doi_str_mv | 10.1017/S1473550421000392 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723674947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1473550421000392</cupid><sourcerecordid>2723674947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-2c7f292859e27a00be1cf96fb1c2a7793a6134a099dd314524102de3f1b3b0603</originalsourceid><addsrcrecordid>eNp1kU1u2zAQhYkiBeo4PUB3BLKtkiEpidUyCPIHOGiBtGthRA1tBpFkk7QD73KHHqb36UlC2QYaIOiKM8PvvQdyGPsi4EyA0OcPIteqKCCXAgBUJT-wSRoVmQIoj3a1ysb7T-w4hEeAxOl8wv78WGyDM_jEsW-5WVC3azoyC-xd6AKPC4zcdUs0MdXEW4pkohv6r9y11Ednk2LfjxarNb6Z8cHywc-TleEdxkh-B40-Ye03bpOyEpJC_bDnxsikG4l79NFhP5IWDfG_L785ck8bR88n7KPFp0CfD-eU_bq--nl5m82-39xdXswyo4SOmTTaykp-KyqSGgEaEsZWpW2Ekah1pbAUKkeoqrZVIi9kLkC2pKxoVAMlqCk73fsu_bBaU4j147D2fYqspZaq1HmVfnbKxJ5KzwjBk62X3nXot7WAetxP_W4_SaMOGuwa79o5_bP-v-oVsmKV4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723674947</pqid></control><display><type>article</type><title>Physical and chemical mechanisms that impact the detection, identification, and quantification of organic matter and the survival of microorganisms on the Martian surface – a review</title><source>Cambridge University Press Journals Complete</source><creator>Bak, Ebbe Norskov ; Nørnberg, Per ; Jensen, Svend J. Knak ; Thøgersen, Jan ; Finster, Kai</creator><creatorcontrib>Bak, Ebbe Norskov ; Nørnberg, Per ; Jensen, Svend J. Knak ; Thøgersen, Jan ; Finster, Kai</creatorcontrib><description>The iconic Viking Landers that landed on Mars in 1976 demonstrated that the Martian surface is an extreme place, dominated by high UV fluxes and regolith chemistry capable of oxidizing organic molecules. From follow-on missions, we have learned that Mars was much warmer and wetter in its early history, and even some areas of Mars (such as crater lakes, possibly with sustained hydrothermal activity) were habitable places (e.g. Grotzinger et al. (2014). Science (New York, N.Y.) 343; Mangold et al. (2021). Science (New York, N.Y.). However, based on the Viking results we have learnt that the search for life and its remains is challenged by abiotic breakdown and alteration of organic material. In particular, the harsh radiation climate at the Martian surface that directly and indirectly could degrade organics has been held accountable for the lack of organics in the Martian regolith. Recent work simulating wind-driven erosion of basalts under Mars-like conditions has shown that this process, comparable to UV- and ionizing radiation, produces reactive compounds, kills microbes and removes methane from the atmosphere. and thereby could equally jeopardize the success of life-seeking missions to Mars. In this review, we summarize and discuss previous work on the role of physical and chemical mechanisms that affect the persistence of organics, and their consequences for the detection of life and/or its signatures in the Martian regolith and in the atmosphere.</description><identifier>ISSN: 1473-5504</identifier><identifier>EISSN: 1475-3006</identifier><identifier>DOI: 10.1017/S1473550421000392</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adsorption ; Atmosphere ; Basalt ; Decomposition ; Detection ; Experiments ; Gamma rays ; Gases ; Hydrothermal activity ; Ionizing radiation ; Lakes ; Lander vehicles ; Mars ; Mars climate ; Mars craters ; Mars missions ; Mars surface ; Microorganisms ; Organic chemistry ; Organic matter ; Oxidation ; Regolith ; Survival ; Ultraviolet radiation</subject><ispartof>International journal of astrobiology, 2022-10, Vol.21 (5), p.356-379</ispartof><rights>Copyright © The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-2c7f292859e27a00be1cf96fb1c2a7793a6134a099dd314524102de3f1b3b0603</citedby><cites>FETCH-LOGICAL-c317t-2c7f292859e27a00be1cf96fb1c2a7793a6134a099dd314524102de3f1b3b0603</cites><orcidid>0000-0002-9132-5542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1473550421000392/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,782,786,27931,27932,55635</link.rule.ids></links><search><creatorcontrib>Bak, Ebbe Norskov</creatorcontrib><creatorcontrib>Nørnberg, Per</creatorcontrib><creatorcontrib>Jensen, Svend J. Knak</creatorcontrib><creatorcontrib>Thøgersen, Jan</creatorcontrib><creatorcontrib>Finster, Kai</creatorcontrib><title>Physical and chemical mechanisms that impact the detection, identification, and quantification of organic matter and the survival of microorganisms on the Martian surface – a review</title><title>International journal of astrobiology</title><addtitle>International Journal of Astrobiology</addtitle><description>The iconic Viking Landers that landed on Mars in 1976 demonstrated that the Martian surface is an extreme place, dominated by high UV fluxes and regolith chemistry capable of oxidizing organic molecules. From follow-on missions, we have learned that Mars was much warmer and wetter in its early history, and even some areas of Mars (such as crater lakes, possibly with sustained hydrothermal activity) were habitable places (e.g. Grotzinger et al. (2014). Science (New York, N.Y.) 343; Mangold et al. (2021). Science (New York, N.Y.). However, based on the Viking results we have learnt that the search for life and its remains is challenged by abiotic breakdown and alteration of organic material. In particular, the harsh radiation climate at the Martian surface that directly and indirectly could degrade organics has been held accountable for the lack of organics in the Martian regolith. Recent work simulating wind-driven erosion of basalts under Mars-like conditions has shown that this process, comparable to UV- and ionizing radiation, produces reactive compounds, kills microbes and removes methane from the atmosphere. and thereby could equally jeopardize the success of life-seeking missions to Mars. In this review, we summarize and discuss previous work on the role of physical and chemical mechanisms that affect the persistence of organics, and their consequences for the detection of life and/or its signatures in the Martian regolith and in the atmosphere.</description><subject>Adsorption</subject><subject>Atmosphere</subject><subject>Basalt</subject><subject>Decomposition</subject><subject>Detection</subject><subject>Experiments</subject><subject>Gamma rays</subject><subject>Gases</subject><subject>Hydrothermal activity</subject><subject>Ionizing radiation</subject><subject>Lakes</subject><subject>Lander vehicles</subject><subject>Mars</subject><subject>Mars climate</subject><subject>Mars craters</subject><subject>Mars missions</subject><subject>Mars surface</subject><subject>Microorganisms</subject><subject>Organic chemistry</subject><subject>Organic matter</subject><subject>Oxidation</subject><subject>Regolith</subject><subject>Survival</subject><subject>Ultraviolet radiation</subject><issn>1473-5504</issn><issn>1475-3006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1u2zAQhYkiBeo4PUB3BLKtkiEpidUyCPIHOGiBtGthRA1tBpFkk7QD73KHHqb36UlC2QYaIOiKM8PvvQdyGPsi4EyA0OcPIteqKCCXAgBUJT-wSRoVmQIoj3a1ysb7T-w4hEeAxOl8wv78WGyDM_jEsW-5WVC3azoyC-xd6AKPC4zcdUs0MdXEW4pkohv6r9y11Ednk2LfjxarNb6Z8cHywc-TleEdxkh-B40-Ye03bpOyEpJC_bDnxsikG4l79NFhP5IWDfG_L785ck8bR88n7KPFp0CfD-eU_bq--nl5m82-39xdXswyo4SOmTTaykp-KyqSGgEaEsZWpW2Ekah1pbAUKkeoqrZVIi9kLkC2pKxoVAMlqCk73fsu_bBaU4j147D2fYqspZaq1HmVfnbKxJ5KzwjBk62X3nXot7WAetxP_W4_SaMOGuwa79o5_bP-v-oVsmKV4g</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Bak, Ebbe Norskov</creator><creator>Nørnberg, Per</creator><creator>Jensen, Svend J. Knak</creator><creator>Thøgersen, Jan</creator><creator>Finster, Kai</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9132-5542</orcidid></search><sort><creationdate>20221001</creationdate><title>Physical and chemical mechanisms that impact the detection, identification, and quantification of organic matter and the survival of microorganisms on the Martian surface – a review</title><author>Bak, Ebbe Norskov ; Nørnberg, Per ; Jensen, Svend J. Knak ; Thøgersen, Jan ; Finster, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-2c7f292859e27a00be1cf96fb1c2a7793a6134a099dd314524102de3f1b3b0603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Atmosphere</topic><topic>Basalt</topic><topic>Decomposition</topic><topic>Detection</topic><topic>Experiments</topic><topic>Gamma rays</topic><topic>Gases</topic><topic>Hydrothermal activity</topic><topic>Ionizing radiation</topic><topic>Lakes</topic><topic>Lander vehicles</topic><topic>Mars</topic><topic>Mars climate</topic><topic>Mars craters</topic><topic>Mars missions</topic><topic>Mars surface</topic><topic>Microorganisms</topic><topic>Organic chemistry</topic><topic>Organic matter</topic><topic>Oxidation</topic><topic>Regolith</topic><topic>Survival</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bak, Ebbe Norskov</creatorcontrib><creatorcontrib>Nørnberg, Per</creatorcontrib><creatorcontrib>Jensen, Svend J. Knak</creatorcontrib><creatorcontrib>Thøgersen, Jan</creatorcontrib><creatorcontrib>Finster, Kai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of astrobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bak, Ebbe Norskov</au><au>Nørnberg, Per</au><au>Jensen, Svend J. Knak</au><au>Thøgersen, Jan</au><au>Finster, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical and chemical mechanisms that impact the detection, identification, and quantification of organic matter and the survival of microorganisms on the Martian surface – a review</atitle><jtitle>International journal of astrobiology</jtitle><addtitle>International Journal of Astrobiology</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>21</volume><issue>5</issue><spage>356</spage><epage>379</epage><pages>356-379</pages><issn>1473-5504</issn><eissn>1475-3006</eissn><abstract>The iconic Viking Landers that landed on Mars in 1976 demonstrated that the Martian surface is an extreme place, dominated by high UV fluxes and regolith chemistry capable of oxidizing organic molecules. From follow-on missions, we have learned that Mars was much warmer and wetter in its early history, and even some areas of Mars (such as crater lakes, possibly with sustained hydrothermal activity) were habitable places (e.g. Grotzinger et al. (2014). Science (New York, N.Y.) 343; Mangold et al. (2021). Science (New York, N.Y.). However, based on the Viking results we have learnt that the search for life and its remains is challenged by abiotic breakdown and alteration of organic material. In particular, the harsh radiation climate at the Martian surface that directly and indirectly could degrade organics has been held accountable for the lack of organics in the Martian regolith. Recent work simulating wind-driven erosion of basalts under Mars-like conditions has shown that this process, comparable to UV- and ionizing radiation, produces reactive compounds, kills microbes and removes methane from the atmosphere. and thereby could equally jeopardize the success of life-seeking missions to Mars. In this review, we summarize and discuss previous work on the role of physical and chemical mechanisms that affect the persistence of organics, and their consequences for the detection of life and/or its signatures in the Martian regolith and in the atmosphere.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1473550421000392</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9132-5542</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-5504 |
ispartof | International journal of astrobiology, 2022-10, Vol.21 (5), p.356-379 |
issn | 1473-5504 1475-3006 |
language | eng |
recordid | cdi_proquest_journals_2723674947 |
source | Cambridge University Press Journals Complete |
subjects | Adsorption Atmosphere Basalt Decomposition Detection Experiments Gamma rays Gases Hydrothermal activity Ionizing radiation Lakes Lander vehicles Mars Mars climate Mars craters Mars missions Mars surface Microorganisms Organic chemistry Organic matter Oxidation Regolith Survival Ultraviolet radiation |
title | Physical and chemical mechanisms that impact the detection, identification, and quantification of organic matter and the survival of microorganisms on the Martian surface – a review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T20%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20and%20chemical%20mechanisms%20that%20impact%20the%20detection,%20identification,%20and%20quantification%20of%20organic%20matter%20and%20the%20survival%20of%20microorganisms%20on%20the%20Martian%20surface%20%E2%80%93%20a%20review&rft.jtitle=International%20journal%20of%20astrobiology&rft.au=Bak,%20Ebbe%20Norskov&rft.date=2022-10-01&rft.volume=21&rft.issue=5&rft.spage=356&rft.epage=379&rft.pages=356-379&rft.issn=1473-5504&rft.eissn=1475-3006&rft_id=info:doi/10.1017/S1473550421000392&rft_dat=%3Cproquest_cross%3E2723674947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723674947&rft_id=info:pmid/&rft_cupid=10_1017_S1473550421000392&rfr_iscdi=true |