Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton
Task-dependent controllers widely used in exoskeletons track predefined trajectories, which overly constrain the volitional motion of individuals with remnant voluntary mobility. Energy shaping, on the other hand, provides task-invariant assistance by altering the human body's dynamic character...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhang, Jiefu Lin, Jianping Peddinti, Vamsi Gregg, Robert D |
description | Task-dependent controllers widely used in exoskeletons track predefined trajectories, which overly constrain the volitional motion of individuals with remnant voluntary mobility. Energy shaping, on the other hand, provides task-invariant assistance by altering the human body's dynamic characteristics in the closed loop. While human-exoskeleton systems are often modeled using Euler-Lagrange equations, in our previous work we modeled the system as a port-controlled-Hamiltonian system, and a task-invariant controller was designed for a knee-ankle exoskeleton using interconnection-damping assignment passivity-based control. In this paper, we extend this framework to design a controller for a backdrivable hip exoskeleton to assist multiple tasks. A set of basis functions that contains information of kinematics is selected and corresponding coefficients are optimized, which allows the controller to provide torque that fits normative human torque for different activities of daily life. Human-subject experiments with two able-bodied subjects demonstrated the controller's capability to reduce muscle effort across different tasks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2723660566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723660566</sourcerecordid><originalsourceid>FETCH-proquest_journals_27236605663</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_MNLnEnqqxRXJRg2B91J1YKF2ta2GP17HfwApzucOyEJMrbKNmvEGUlD6CmlyAvMc5aQ7cFFdRcaKiN994bjTThlOiitid5qaK0HATtxGa5ePcVZS6iVg-plwyC1jNYsyLQVOsj01zlZ7qtTWWfO28coQ2x6O3rzpQYLZJzTnHP23_UBSto5Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723660566</pqid></control><display><type>article</type><title>Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton</title><source>Free E- Journals</source><creator>Zhang, Jiefu ; Lin, Jianping ; Peddinti, Vamsi ; Gregg, Robert D</creator><creatorcontrib>Zhang, Jiefu ; Lin, Jianping ; Peddinti, Vamsi ; Gregg, Robert D</creatorcontrib><description>Task-dependent controllers widely used in exoskeletons track predefined trajectories, which overly constrain the volitional motion of individuals with remnant voluntary mobility. Energy shaping, on the other hand, provides task-invariant assistance by altering the human body's dynamic characteristics in the closed loop. While human-exoskeleton systems are often modeled using Euler-Lagrange equations, in our previous work we modeled the system as a port-controlled-Hamiltonian system, and a task-invariant controller was designed for a knee-ankle exoskeleton using interconnection-damping assignment passivity-based control. In this paper, we extend this framework to design a controller for a backdrivable hip exoskeleton to assist multiple tasks. A set of basis functions that contains information of kinematics is selected and corresponding coefficients are optimized, which allows the controller to provide torque that fits normative human torque for different activities of daily life. Human-subject experiments with two able-bodied subjects demonstrated the controller's capability to reduce muscle effort across different tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Basis functions ; Closed loops ; Control systems design ; Controllers ; Damping ; Dynamic characteristics ; Euler-Lagrange equation ; Exoskeletons ; Hamiltonian functions ; Invariants ; Kinematics ; Muscles ; Torque</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zhang, Jiefu</creatorcontrib><creatorcontrib>Lin, Jianping</creatorcontrib><creatorcontrib>Peddinti, Vamsi</creatorcontrib><creatorcontrib>Gregg, Robert D</creatorcontrib><title>Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton</title><title>arXiv.org</title><description>Task-dependent controllers widely used in exoskeletons track predefined trajectories, which overly constrain the volitional motion of individuals with remnant voluntary mobility. Energy shaping, on the other hand, provides task-invariant assistance by altering the human body's dynamic characteristics in the closed loop. While human-exoskeleton systems are often modeled using Euler-Lagrange equations, in our previous work we modeled the system as a port-controlled-Hamiltonian system, and a task-invariant controller was designed for a knee-ankle exoskeleton using interconnection-damping assignment passivity-based control. In this paper, we extend this framework to design a controller for a backdrivable hip exoskeleton to assist multiple tasks. A set of basis functions that contains information of kinematics is selected and corresponding coefficients are optimized, which allows the controller to provide torque that fits normative human torque for different activities of daily life. Human-subject experiments with two able-bodied subjects demonstrated the controller's capability to reduce muscle effort across different tasks.</description><subject>Basis functions</subject><subject>Closed loops</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Damping</subject><subject>Dynamic characteristics</subject><subject>Euler-Lagrange equation</subject><subject>Exoskeletons</subject><subject>Hamiltonian functions</subject><subject>Invariants</subject><subject>Kinematics</subject><subject>Muscles</subject><subject>Torque</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_MNLnEnqqxRXJRg2B91J1YKF2ta2GP17HfwApzucOyEJMrbKNmvEGUlD6CmlyAvMc5aQ7cFFdRcaKiN994bjTThlOiitid5qaK0HATtxGa5ePcVZS6iVg-plwyC1jNYsyLQVOsj01zlZ7qtTWWfO28coQ2x6O3rzpQYLZJzTnHP23_UBSto5Gw</recordid><startdate>20230325</startdate><enddate>20230325</enddate><creator>Zhang, Jiefu</creator><creator>Lin, Jianping</creator><creator>Peddinti, Vamsi</creator><creator>Gregg, Robert D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230325</creationdate><title>Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton</title><author>Zhang, Jiefu ; Lin, Jianping ; Peddinti, Vamsi ; Gregg, Robert D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27236605663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Basis functions</topic><topic>Closed loops</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Damping</topic><topic>Dynamic characteristics</topic><topic>Euler-Lagrange equation</topic><topic>Exoskeletons</topic><topic>Hamiltonian functions</topic><topic>Invariants</topic><topic>Kinematics</topic><topic>Muscles</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiefu</creatorcontrib><creatorcontrib>Lin, Jianping</creatorcontrib><creatorcontrib>Peddinti, Vamsi</creatorcontrib><creatorcontrib>Gregg, Robert D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiefu</au><au>Lin, Jianping</au><au>Peddinti, Vamsi</au><au>Gregg, Robert D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton</atitle><jtitle>arXiv.org</jtitle><date>2023-03-25</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Task-dependent controllers widely used in exoskeletons track predefined trajectories, which overly constrain the volitional motion of individuals with remnant voluntary mobility. Energy shaping, on the other hand, provides task-invariant assistance by altering the human body's dynamic characteristics in the closed loop. While human-exoskeleton systems are often modeled using Euler-Lagrange equations, in our previous work we modeled the system as a port-controlled-Hamiltonian system, and a task-invariant controller was designed for a knee-ankle exoskeleton using interconnection-damping assignment passivity-based control. In this paper, we extend this framework to design a controller for a backdrivable hip exoskeleton to assist multiple tasks. A set of basis functions that contains information of kinematics is selected and corresponding coefficients are optimized, which allows the controller to provide torque that fits normative human torque for different activities of daily life. Human-subject experiments with two able-bodied subjects demonstrated the controller's capability to reduce muscle effort across different tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2723660566 |
source | Free E- Journals |
subjects | Basis functions Closed loops Control systems design Controllers Damping Dynamic characteristics Euler-Lagrange equation Exoskeletons Hamiltonian functions Invariants Kinematics Muscles Torque |
title | Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimal%20Energy%20Shaping%20Control%20for%20a%20Backdrivable%20Hip%20Exoskeleton&rft.jtitle=arXiv.org&rft.au=Zhang,%20Jiefu&rft.date=2023-03-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2723660566%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723660566&rft_id=info:pmid/&rfr_iscdi=true |