Bayesian Repulsive Mixture Modeling with Matérn Point Processes

Mixture models are a standard tool in statistical analysis, widely used for density modeling and model-based clustering. Current approaches typically model the parameters of the mixture components as independent variables. This can result in overlapping or poorly separated clusters when either the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Sun, Hanxi, Zhang, Boqian, Rao, Vinayak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sun, Hanxi
Zhang, Boqian
Rao, Vinayak
description Mixture models are a standard tool in statistical analysis, widely used for density modeling and model-based clustering. Current approaches typically model the parameters of the mixture components as independent variables. This can result in overlapping or poorly separated clusters when either the number of clusters or the form of the mixture components is misspecified. Such model misspecification can undermine the interpretability and simplicity of these mixture models. To address this problem, we propose a Bayesian mixture model with repulsion between mixture components. The repulsion is induced by a generalized Matérn type-III repulsive point process model, obtained through a dependent sequential thinning scheme on a primary Poisson point process. We derive a novel and efficient Gibbs sampler for posterior inference, and demonstrate the utility of the proposed method on a number of synthetic and real-world problems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2723655863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723655863</sourcerecordid><originalsourceid>FETCH-proquest_journals_27236558633</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcEqsTC3OTMxTCEotKM0pzixLVfDNrCgpLQLS-SmpOZl56QrlmSUZCr6JJYdXFuUpBORn5pUoBBTlJ6cWF6cW8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJG5kbGZqamFmbExcaoAnUk59g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723655863</pqid></control><display><type>article</type><title>Bayesian Repulsive Mixture Modeling with Matérn Point Processes</title><source>Freely Accessible Journals</source><creator>Sun, Hanxi ; Zhang, Boqian ; Rao, Vinayak</creator><creatorcontrib>Sun, Hanxi ; Zhang, Boqian ; Rao, Vinayak</creatorcontrib><description>Mixture models are a standard tool in statistical analysis, widely used for density modeling and model-based clustering. Current approaches typically model the parameters of the mixture components as independent variables. This can result in overlapping or poorly separated clusters when either the number of clusters or the form of the mixture components is misspecified. Such model misspecification can undermine the interpretability and simplicity of these mixture models. To address this problem, we propose a Bayesian mixture model with repulsion between mixture components. The repulsion is induced by a generalized Matérn type-III repulsive point process model, obtained through a dependent sequential thinning scheme on a primary Poisson point process. We derive a novel and efficient Gibbs sampler for posterior inference, and demonstrate the utility of the proposed method on a number of synthetic and real-world problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Clustering ; Independent variables ; Modelling ; Probabilistic models ; Statistical analysis</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Sun, Hanxi</creatorcontrib><creatorcontrib>Zhang, Boqian</creatorcontrib><creatorcontrib>Rao, Vinayak</creatorcontrib><title>Bayesian Repulsive Mixture Modeling with Matérn Point Processes</title><title>arXiv.org</title><description>Mixture models are a standard tool in statistical analysis, widely used for density modeling and model-based clustering. Current approaches typically model the parameters of the mixture components as independent variables. This can result in overlapping or poorly separated clusters when either the number of clusters or the form of the mixture components is misspecified. Such model misspecification can undermine the interpretability and simplicity of these mixture models. To address this problem, we propose a Bayesian mixture model with repulsion between mixture components. The repulsion is induced by a generalized Matérn type-III repulsive point process model, obtained through a dependent sequential thinning scheme on a primary Poisson point process. We derive a novel and efficient Gibbs sampler for posterior inference, and demonstrate the utility of the proposed method on a number of synthetic and real-world problems.</description><subject>Bayesian analysis</subject><subject>Clustering</subject><subject>Independent variables</subject><subject>Modelling</subject><subject>Probabilistic models</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcEqsTC3OTMxTCEotKM0pzixLVfDNrCgpLQLS-SmpOZl56QrlmSUZCr6JJYdXFuUpBORn5pUoBBTlJ6cWF6cW8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJG5kbGZqamFmbExcaoAnUk59g</recordid><startdate>20221009</startdate><enddate>20221009</enddate><creator>Sun, Hanxi</creator><creator>Zhang, Boqian</creator><creator>Rao, Vinayak</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221009</creationdate><title>Bayesian Repulsive Mixture Modeling with Matérn Point Processes</title><author>Sun, Hanxi ; Zhang, Boqian ; Rao, Vinayak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27236558633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Clustering</topic><topic>Independent variables</topic><topic>Modelling</topic><topic>Probabilistic models</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Hanxi</creatorcontrib><creatorcontrib>Zhang, Boqian</creatorcontrib><creatorcontrib>Rao, Vinayak</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Hanxi</au><au>Zhang, Boqian</au><au>Rao, Vinayak</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bayesian Repulsive Mixture Modeling with Matérn Point Processes</atitle><jtitle>arXiv.org</jtitle><date>2022-10-09</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Mixture models are a standard tool in statistical analysis, widely used for density modeling and model-based clustering. Current approaches typically model the parameters of the mixture components as independent variables. This can result in overlapping or poorly separated clusters when either the number of clusters or the form of the mixture components is misspecified. Such model misspecification can undermine the interpretability and simplicity of these mixture models. To address this problem, we propose a Bayesian mixture model with repulsion between mixture components. The repulsion is induced by a generalized Matérn type-III repulsive point process model, obtained through a dependent sequential thinning scheme on a primary Poisson point process. We derive a novel and efficient Gibbs sampler for posterior inference, and demonstrate the utility of the proposed method on a number of synthetic and real-world problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2723655863
source Freely Accessible Journals
subjects Bayesian analysis
Clustering
Independent variables
Modelling
Probabilistic models
Statistical analysis
title Bayesian Repulsive Mixture Modeling with Matérn Point Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T08%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bayesian%20Repulsive%20Mixture%20Modeling%20with%20Mat%C3%A9rn%20Point%20Processes&rft.jtitle=arXiv.org&rft.au=Sun,%20Hanxi&rft.date=2022-10-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2723655863%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723655863&rft_id=info:pmid/&rfr_iscdi=true