A new GEE method to account for heteroscedasticity using asymmetric least-square regressions

Generalized estimating equations are widely used to analyze longitudinal data; however, they are not appropriate for heteroscedastic data, because they only estimate regressor effects on the mean response - and therefore do not account for data heterogeneity. Here, we combine the with the asymmetric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2022-10, Vol.49 (14), p.3564-3590
Hauptverfasser: Barry, Amadou, Oualkacha, Karim, Charpentier, Arthur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3590
container_issue 14
container_start_page 3564
container_title Journal of applied statistics
container_volume 49
creator Barry, Amadou
Oualkacha, Karim
Charpentier, Arthur
description Generalized estimating equations are widely used to analyze longitudinal data; however, they are not appropriate for heteroscedastic data, because they only estimate regressor effects on the mean response - and therefore do not account for data heterogeneity. Here, we combine the with the asymmetric least squares (expectile) regression to derive a new class of estimators, which we call generalized expectile estimating equations . The model estimates regressor effects on the expectiles of the response distribution, which provides a detailed view of regressor effects on the entire response distribution. In addition to capturing data heteroscedasticity, the GEEE extends the various working correlation structures to account for within-subject dependence. We derive the asymptotic properties of the estimators and propose a robust estimator of its covariance matrix for inference (see our R package, github.com/AmBarry/expectgee ). Our simulations show that the GEEE estimator is non-biased and efficient, and our real data analysis shows it captures heteroscedasticity.
doi_str_mv 10.1080/02664763.2021.1957789
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2723652459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723652459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-35837d9fdb0f5cfa4eddcb2cfcd8bccdbb0b118b8ec00795aca2f94a7b2ba2e3</originalsourceid><addsrcrecordid>eNp9kUtrVDEYhoModhz9CUrAjZsz5nouG7GUsRYKbroUQq4zKeckbZLTMv_eHGZa1EVXWXzP-yZfHgA-YrTBqEdfEWlb1rV0QxDBGzzwruuHV2CFaYsaxCl5DVYL0yzQGXiX8y1CqMecvgVntCWs7Vu2Ar_PYbCP8HK7hZMt-2hgiVBqHedQoIsJ7m2xKWZtjczFa18OcM4-7KDMh6lGktdwtHXW5PtZJguT3SWbs48hvwdvnByz_XA61-Dmx_bm4mdz_evy6uL8utFsaEtDeU87MzijkOPaSWaN0Ypop02vtDZKIYVxr3qrEeoGLrUkbmCyU0RJYukafDvW3s1qskbbUJIcxV3yk0wHEaUX_06C34tdfBAD5wMlXS34cipI8X62uYjJ143HUQYb5yxIRzhjpMesop__Q2_jnELdbqFoywmrnWvAj5SuX5eTdc-PwUgs-sSTPrHoEyd9Nffp702eU0--KvD9CPhQ5UzyMabRiCIPY0wuyaB9FvTlO_4AsACtbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723652459</pqid></control><display><type>article</type><title>A new GEE method to account for heteroscedasticity using asymmetric least-square regressions</title><source>Business Source Complete</source><source>PubMed Central</source><creator>Barry, Amadou ; Oualkacha, Karim ; Charpentier, Arthur</creator><creatorcontrib>Barry, Amadou ; Oualkacha, Karim ; Charpentier, Arthur</creatorcontrib><description>Generalized estimating equations are widely used to analyze longitudinal data; however, they are not appropriate for heteroscedastic data, because they only estimate regressor effects on the mean response - and therefore do not account for data heterogeneity. Here, we combine the with the asymmetric least squares (expectile) regression to derive a new class of estimators, which we call generalized expectile estimating equations . The model estimates regressor effects on the expectiles of the response distribution, which provides a detailed view of regressor effects on the entire response distribution. In addition to capturing data heteroscedasticity, the GEEE extends the various working correlation structures to account for within-subject dependence. We derive the asymptotic properties of the estimators and propose a robust estimator of its covariance matrix for inference (see our R package, github.com/AmBarry/expectgee ). Our simulations show that the GEEE estimator is non-biased and efficient, and our real data analysis shows it captures heteroscedasticity.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2021.1957789</identifier><identifier>PMID: 36246864</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Asymmetry ; Asymptotic properties ; cluster data ; Covariance matrix ; Data analysis ; Estimators ; Expectile regression ; GEE working correlation ; Heterogeneity ; Least squares ; longitudinal data ; quantile regression ; Statistical methods</subject><ispartof>Journal of applied statistics, 2022-10, Vol.49 (14), p.3564-3590</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group.</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-35837d9fdb0f5cfa4eddcb2cfcd8bccdbb0b118b8ec00795aca2f94a7b2ba2e3</citedby><cites>FETCH-LOGICAL-c496t-35837d9fdb0f5cfa4eddcb2cfcd8bccdbb0b118b8ec00795aca2f94a7b2ba2e3</cites><orcidid>0000-0002-9911-079X ; 0000-0003-3396-1724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9559327/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9559327/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36246864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barry, Amadou</creatorcontrib><creatorcontrib>Oualkacha, Karim</creatorcontrib><creatorcontrib>Charpentier, Arthur</creatorcontrib><title>A new GEE method to account for heteroscedasticity using asymmetric least-square regressions</title><title>Journal of applied statistics</title><addtitle>J Appl Stat</addtitle><description>Generalized estimating equations are widely used to analyze longitudinal data; however, they are not appropriate for heteroscedastic data, because they only estimate regressor effects on the mean response - and therefore do not account for data heterogeneity. Here, we combine the with the asymmetric least squares (expectile) regression to derive a new class of estimators, which we call generalized expectile estimating equations . The model estimates regressor effects on the expectiles of the response distribution, which provides a detailed view of regressor effects on the entire response distribution. In addition to capturing data heteroscedasticity, the GEEE extends the various working correlation structures to account for within-subject dependence. We derive the asymptotic properties of the estimators and propose a robust estimator of its covariance matrix for inference (see our R package, github.com/AmBarry/expectgee ). Our simulations show that the GEEE estimator is non-biased and efficient, and our real data analysis shows it captures heteroscedasticity.</description><subject>Asymmetry</subject><subject>Asymptotic properties</subject><subject>cluster data</subject><subject>Covariance matrix</subject><subject>Data analysis</subject><subject>Estimators</subject><subject>Expectile regression</subject><subject>GEE working correlation</subject><subject>Heterogeneity</subject><subject>Least squares</subject><subject>longitudinal data</subject><subject>quantile regression</subject><subject>Statistical methods</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtrVDEYhoModhz9CUrAjZsz5nouG7GUsRYKbroUQq4zKeckbZLTMv_eHGZa1EVXWXzP-yZfHgA-YrTBqEdfEWlb1rV0QxDBGzzwruuHV2CFaYsaxCl5DVYL0yzQGXiX8y1CqMecvgVntCWs7Vu2Ar_PYbCP8HK7hZMt-2hgiVBqHedQoIsJ7m2xKWZtjczFa18OcM4-7KDMh6lGktdwtHXW5PtZJguT3SWbs48hvwdvnByz_XA61-Dmx_bm4mdz_evy6uL8utFsaEtDeU87MzijkOPaSWaN0Ypop02vtDZKIYVxr3qrEeoGLrUkbmCyU0RJYukafDvW3s1qskbbUJIcxV3yk0wHEaUX_06C34tdfBAD5wMlXS34cipI8X62uYjJ143HUQYb5yxIRzhjpMesop__Q2_jnELdbqFoywmrnWvAj5SuX5eTdc-PwUgs-sSTPrHoEyd9Nffp702eU0--KvD9CPhQ5UzyMabRiCIPY0wuyaB9FvTlO_4AsACtbg</recordid><startdate>20221026</startdate><enddate>20221026</enddate><creator>Barry, Amadou</creator><creator>Oualkacha, Karim</creator><creator>Charpentier, Arthur</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9911-079X</orcidid><orcidid>https://orcid.org/0000-0003-3396-1724</orcidid></search><sort><creationdate>20221026</creationdate><title>A new GEE method to account for heteroscedasticity using asymmetric least-square regressions</title><author>Barry, Amadou ; Oualkacha, Karim ; Charpentier, Arthur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-35837d9fdb0f5cfa4eddcb2cfcd8bccdbb0b118b8ec00795aca2f94a7b2ba2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymmetry</topic><topic>Asymptotic properties</topic><topic>cluster data</topic><topic>Covariance matrix</topic><topic>Data analysis</topic><topic>Estimators</topic><topic>Expectile regression</topic><topic>GEE working correlation</topic><topic>Heterogeneity</topic><topic>Least squares</topic><topic>longitudinal data</topic><topic>quantile regression</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barry, Amadou</creatorcontrib><creatorcontrib>Oualkacha, Karim</creatorcontrib><creatorcontrib>Charpentier, Arthur</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barry, Amadou</au><au>Oualkacha, Karim</au><au>Charpentier, Arthur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new GEE method to account for heteroscedasticity using asymmetric least-square regressions</atitle><jtitle>Journal of applied statistics</jtitle><addtitle>J Appl Stat</addtitle><date>2022-10-26</date><risdate>2022</risdate><volume>49</volume><issue>14</issue><spage>3564</spage><epage>3590</epage><pages>3564-3590</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>Generalized estimating equations are widely used to analyze longitudinal data; however, they are not appropriate for heteroscedastic data, because they only estimate regressor effects on the mean response - and therefore do not account for data heterogeneity. Here, we combine the with the asymmetric least squares (expectile) regression to derive a new class of estimators, which we call generalized expectile estimating equations . The model estimates regressor effects on the expectiles of the response distribution, which provides a detailed view of regressor effects on the entire response distribution. In addition to capturing data heteroscedasticity, the GEEE extends the various working correlation structures to account for within-subject dependence. We derive the asymptotic properties of the estimators and propose a robust estimator of its covariance matrix for inference (see our R package, github.com/AmBarry/expectgee ). Our simulations show that the GEEE estimator is non-biased and efficient, and our real data analysis shows it captures heteroscedasticity.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>36246864</pmid><doi>10.1080/02664763.2021.1957789</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-9911-079X</orcidid><orcidid>https://orcid.org/0000-0003-3396-1724</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-4763
ispartof Journal of applied statistics, 2022-10, Vol.49 (14), p.3564-3590
issn 0266-4763
1360-0532
language eng
recordid cdi_proquest_journals_2723652459
source Business Source Complete; PubMed Central
subjects Asymmetry
Asymptotic properties
cluster data
Covariance matrix
Data analysis
Estimators
Expectile regression
GEE working correlation
Heterogeneity
Least squares
longitudinal data
quantile regression
Statistical methods
title A new GEE method to account for heteroscedasticity using asymmetric least-square regressions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20GEE%20method%20to%20account%20for%20heteroscedasticity%20using%20asymmetric%20least-square%20regressions&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Barry,%20Amadou&rft.date=2022-10-26&rft.volume=49&rft.issue=14&rft.spage=3564&rft.epage=3590&rft.pages=3564-3590&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2021.1957789&rft_dat=%3Cproquest_pubme%3E2723652459%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723652459&rft_id=info:pmid/36246864&rfr_iscdi=true