Fault Diagnosis of Oil‐Immersed Power Transformers Using SVM and Logarithmic Arctangent Transform
A new method of dissolved gas analysis is proposed to improve the accuracy of transformer fault diagnosis. The slime mold optimized support vector machine (SMA‐SVM), and logarithmic arctangent transform (LOG‐ACT) are combined. On the one hand, the better global optimization performance of SMA is use...
Gespeichert in:
Veröffentlicht in: | IEEJ transactions on electrical and electronic engineering 2022-11, Vol.17 (11), p.1562-1569 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1569 |
---|---|
container_issue | 11 |
container_start_page | 1562 |
container_title | IEEJ transactions on electrical and electronic engineering |
container_volume | 17 |
creator | Hu, Qin Mo, Jiaqing Ruan, Saisai Zhang, Xin |
description | A new method of dissolved gas analysis is proposed to improve the accuracy of transformer fault diagnosis. The slime mold optimized support vector machine (SMA‐SVM), and logarithmic arctangent transform (LOG‐ACT) are combined. On the one hand, the better global optimization performance of SMA is used to optimize SVM parameters to solve the difficulty of SVM parameter selection. On the other hand, corresponding transformations are carried out for different features: the logarithmic(LOG) transformation is carried out for the original DGA data to retain the order of magnitude information. The arctangent (ACT) transformation is carried out for the ratio features to improve the data structure. Therefore, the combination of data transformation and optimization model can improve the accuracy of diagnosis from two aspects of data structure and classification algorithm. The performance of the proposed method was compared with IEC three ratio method, artificial neural network, optimized artificial neural network, GA‐SVM, and PSO‐SVM. Experimental results using published data show that the proposed method can significantly improve the accuracy of transformer fault diagnosis. © 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC. |
doi_str_mv | 10.1002/tee.23678 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723651750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723651750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2578-74673c4497d2019cf4ea9ca5d5534daecf14064cae44ea62af5dfbe9e5f365793</originalsourceid><addsrcrecordid>eNp1kL1OwzAQgC0EEqUw8AaWmBjS2rEdJ2NVWqhUVCRaVss4dnCVxMVOVXXrI_CMPAkpQTAx3enuux99AFxjNMAIxcNG60FMEp6egB7OCI5oluLT35yTc3ARwhohmpA07QE1lduygXdWFrULNkBn4MKWn4ePWVVpH3QOn9xOe7j0sg7G-WMRroKtC_j88ghlncO5K6S3zVtlFRx51ci60HXzN3EJzowsg776iX2wmk6W44dovrifjUfzSMWMpxGnCSeKtk_mMcKZMlTLTEmWM0ZoLrUymKKEKqlp20liaVhuXnWmmSEJ4xnpg5tu78a7960OjVi7ra_bkyLmrRSGOUMtddtRyrsQvDZi420l_V5gJI4ORetQfDts2WHH7myp9_-DYjmZdBNfR-t0yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723651750</pqid></control><display><type>article</type><title>Fault Diagnosis of Oil‐Immersed Power Transformers Using SVM and Logarithmic Arctangent Transform</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hu, Qin ; Mo, Jiaqing ; Ruan, Saisai ; Zhang, Xin</creator><creatorcontrib>Hu, Qin ; Mo, Jiaqing ; Ruan, Saisai ; Zhang, Xin</creatorcontrib><description>A new method of dissolved gas analysis is proposed to improve the accuracy of transformer fault diagnosis. The slime mold optimized support vector machine (SMA‐SVM), and logarithmic arctangent transform (LOG‐ACT) are combined. On the one hand, the better global optimization performance of SMA is used to optimize SVM parameters to solve the difficulty of SVM parameter selection. On the other hand, corresponding transformations are carried out for different features: the logarithmic(LOG) transformation is carried out for the original DGA data to retain the order of magnitude information. The arctangent (ACT) transformation is carried out for the ratio features to improve the data structure. Therefore, the combination of data transformation and optimization model can improve the accuracy of diagnosis from two aspects of data structure and classification algorithm. The performance of the proposed method was compared with IEC three ratio method, artificial neural network, optimized artificial neural network, GA‐SVM, and PSO‐SVM. Experimental results using published data show that the proposed method can significantly improve the accuracy of transformer fault diagnosis. © 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</description><identifier>ISSN: 1931-4973</identifier><identifier>EISSN: 1931-4981</identifier><identifier>DOI: 10.1002/tee.23678</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Accuracy ; Algorithms ; arctangent transform ; Artificial neural networks ; Data structures ; dissolved gas analysis (DGA) ; Dissolved gases ; Fault diagnosis ; Gas analysis ; Global optimization ; logarithmic transform ; Logarithms ; Neural networks ; Optimization models ; Parameters ; slime molds algorithm ; support vector machine ; Support vector machines ; Transformations ; Transformers</subject><ispartof>IEEJ transactions on electrical and electronic engineering, 2022-11, Vol.17 (11), p.1562-1569</ispartof><rights>2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</rights><rights>Copyright © 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2578-74673c4497d2019cf4ea9ca5d5534daecf14064cae44ea62af5dfbe9e5f365793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftee.23678$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftee.23678$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Hu, Qin</creatorcontrib><creatorcontrib>Mo, Jiaqing</creatorcontrib><creatorcontrib>Ruan, Saisai</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><title>Fault Diagnosis of Oil‐Immersed Power Transformers Using SVM and Logarithmic Arctangent Transform</title><title>IEEJ transactions on electrical and electronic engineering</title><description>A new method of dissolved gas analysis is proposed to improve the accuracy of transformer fault diagnosis. The slime mold optimized support vector machine (SMA‐SVM), and logarithmic arctangent transform (LOG‐ACT) are combined. On the one hand, the better global optimization performance of SMA is used to optimize SVM parameters to solve the difficulty of SVM parameter selection. On the other hand, corresponding transformations are carried out for different features: the logarithmic(LOG) transformation is carried out for the original DGA data to retain the order of magnitude information. The arctangent (ACT) transformation is carried out for the ratio features to improve the data structure. Therefore, the combination of data transformation and optimization model can improve the accuracy of diagnosis from two aspects of data structure and classification algorithm. The performance of the proposed method was compared with IEC three ratio method, artificial neural network, optimized artificial neural network, GA‐SVM, and PSO‐SVM. Experimental results using published data show that the proposed method can significantly improve the accuracy of transformer fault diagnosis. © 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>arctangent transform</subject><subject>Artificial neural networks</subject><subject>Data structures</subject><subject>dissolved gas analysis (DGA)</subject><subject>Dissolved gases</subject><subject>Fault diagnosis</subject><subject>Gas analysis</subject><subject>Global optimization</subject><subject>logarithmic transform</subject><subject>Logarithms</subject><subject>Neural networks</subject><subject>Optimization models</subject><subject>Parameters</subject><subject>slime molds algorithm</subject><subject>support vector machine</subject><subject>Support vector machines</subject><subject>Transformations</subject><subject>Transformers</subject><issn>1931-4973</issn><issn>1931-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAQgC0EEqUw8AaWmBjS2rEdJ2NVWqhUVCRaVss4dnCVxMVOVXXrI_CMPAkpQTAx3enuux99AFxjNMAIxcNG60FMEp6egB7OCI5oluLT35yTc3ARwhohmpA07QE1lduygXdWFrULNkBn4MKWn4ePWVVpH3QOn9xOe7j0sg7G-WMRroKtC_j88ghlncO5K6S3zVtlFRx51ci60HXzN3EJzowsg776iX2wmk6W44dovrifjUfzSMWMpxGnCSeKtk_mMcKZMlTLTEmWM0ZoLrUymKKEKqlp20liaVhuXnWmmSEJ4xnpg5tu78a7960OjVi7ra_bkyLmrRSGOUMtddtRyrsQvDZi420l_V5gJI4ORetQfDts2WHH7myp9_-DYjmZdBNfR-t0yA</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Hu, Qin</creator><creator>Mo, Jiaqing</creator><creator>Ruan, Saisai</creator><creator>Zhang, Xin</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>202211</creationdate><title>Fault Diagnosis of Oil‐Immersed Power Transformers Using SVM and Logarithmic Arctangent Transform</title><author>Hu, Qin ; Mo, Jiaqing ; Ruan, Saisai ; Zhang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2578-74673c4497d2019cf4ea9ca5d5534daecf14064cae44ea62af5dfbe9e5f365793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>arctangent transform</topic><topic>Artificial neural networks</topic><topic>Data structures</topic><topic>dissolved gas analysis (DGA)</topic><topic>Dissolved gases</topic><topic>Fault diagnosis</topic><topic>Gas analysis</topic><topic>Global optimization</topic><topic>logarithmic transform</topic><topic>Logarithms</topic><topic>Neural networks</topic><topic>Optimization models</topic><topic>Parameters</topic><topic>slime molds algorithm</topic><topic>support vector machine</topic><topic>Support vector machines</topic><topic>Transformations</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Qin</creatorcontrib><creatorcontrib>Mo, Jiaqing</creatorcontrib><creatorcontrib>Ruan, Saisai</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Qin</au><au>Mo, Jiaqing</au><au>Ruan, Saisai</au><au>Zhang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Diagnosis of Oil‐Immersed Power Transformers Using SVM and Logarithmic Arctangent Transform</atitle><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle><date>2022-11</date><risdate>2022</risdate><volume>17</volume><issue>11</issue><spage>1562</spage><epage>1569</epage><pages>1562-1569</pages><issn>1931-4973</issn><eissn>1931-4981</eissn><abstract>A new method of dissolved gas analysis is proposed to improve the accuracy of transformer fault diagnosis. The slime mold optimized support vector machine (SMA‐SVM), and logarithmic arctangent transform (LOG‐ACT) are combined. On the one hand, the better global optimization performance of SMA is used to optimize SVM parameters to solve the difficulty of SVM parameter selection. On the other hand, corresponding transformations are carried out for different features: the logarithmic(LOG) transformation is carried out for the original DGA data to retain the order of magnitude information. The arctangent (ACT) transformation is carried out for the ratio features to improve the data structure. Therefore, the combination of data transformation and optimization model can improve the accuracy of diagnosis from two aspects of data structure and classification algorithm. The performance of the proposed method was compared with IEC three ratio method, artificial neural network, optimized artificial neural network, GA‐SVM, and PSO‐SVM. Experimental results using published data show that the proposed method can significantly improve the accuracy of transformer fault diagnosis. © 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/tee.23678</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-4973 |
ispartof | IEEJ transactions on electrical and electronic engineering, 2022-11, Vol.17 (11), p.1562-1569 |
issn | 1931-4973 1931-4981 |
language | eng |
recordid | cdi_proquest_journals_2723651750 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accuracy Algorithms arctangent transform Artificial neural networks Data structures dissolved gas analysis (DGA) Dissolved gases Fault diagnosis Gas analysis Global optimization logarithmic transform Logarithms Neural networks Optimization models Parameters slime molds algorithm support vector machine Support vector machines Transformations Transformers |
title | Fault Diagnosis of Oil‐Immersed Power Transformers Using SVM and Logarithmic Arctangent Transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Diagnosis%20of%20Oil%E2%80%90Immersed%20Power%20Transformers%20Using%20SVM%20and%20Logarithmic%20Arctangent%20Transform&rft.jtitle=IEEJ%20transactions%20on%20electrical%20and%20electronic%20engineering&rft.au=Hu,%20Qin&rft.date=2022-11&rft.volume=17&rft.issue=11&rft.spage=1562&rft.epage=1569&rft.pages=1562-1569&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002/tee.23678&rft_dat=%3Cproquest_cross%3E2723651750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723651750&rft_id=info:pmid/&rfr_iscdi=true |