Timing and sources of skarn mineralization in the Canadian Tungsten Belt: revisiting the paragenesis, crystal chemistry and geochronology of apatite
Five generations of fluorapatite in mineralized skarn and host rocks from the Mactung W (Cu-Au) deposit, Northwest Territories, Canada, are identified based on petrographic, compositional and geochronological (U–Pb) data. These data, coupled with new (in this study) and previously published data on...
Gespeichert in:
Veröffentlicht in: | Mineralium deposita 2022-11, Vol.57 (8), p.1391-1413 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1413 |
---|---|
container_issue | 8 |
container_start_page | 1391 |
container_title | Mineralium deposita |
container_volume | 57 |
creator | Roy-Garand, Andree Adlakha, Erin Hanley, Jacob Elongo, Vanessa Lecumberri-Sanchez, Pilar Falck, Hendrik Boucher, Brandon |
description | Five generations of fluorapatite in mineralized skarn and host rocks from the Mactung W (Cu-Au) deposit, Northwest Territories, Canada, are identified based on petrographic, compositional and geochronological (U–Pb) data. These data, coupled with new (in this study) and previously published data on apatite from the nearby Cantung deposit, provide constraints on the timing of skarn mineralization, as well as metal and fluid sources of the Canadian Tungsten Belt. Type-i apatite of the Mactung deposit formed from ~ 106 ± 4 to 103 ± 2 Ma through recrystallization of sedimentary apatite (type-o apatite) during regional metamorphism, pre-skarnification. Type-i apatite is W-rich (up to 47.6 ppm) and occurs with coeval scheelite and titanite, indicating a potential sedimentary source, perhaps from detrital rutile, for W. Apatite crystals in prograde (type-ii) and retrograde (type-iii and type-iv) skarns yield ages from ~ 96 ± 1 to 92 ± 1 Ma, overlapping with Mactung biotite-granite plutons and late-stage felsic dykes and confirming skarn formation during emplacement of the granites over a period of ~ 5 million years. Type-ii apatite contains high rare earth element that increases with increasingly negative Eu anomalies, suggesting prograde fluids were sourced from a felsic melt undergoing fractional crystallization. Retrograde apatite exhibits weak lanthanide tetrad effects with superchondritic Y/Ho ratios (> 38), suggesting retrograde fluids exsolved from a highly evolved magmatic source. Apatite crystals from the Cantung skarn deposit are compositionally and paragenetically similar to those from the Mactung apatite and yield ages similar to the Cantung biotite-monzogranite plutons and late-stage felsic dykes. We conclude prograde fluids were derived from biotite-granites, whereas retrograde fluids exsolved from evolved melts recorded by later felsic dykes. |
doi_str_mv | 10.1007/s00126-022-01107-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723645102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723645102</sourcerecordid><originalsourceid>FETCH-LOGICAL-a272t-818bf98b137b96225712c94151a26366597be348e7c3befc37f90c3a5c699aef3</originalsourceid><addsrcrecordid>eNp9kMFuEzEURa0KpIbSH2BliS1Dn-0Zz5gdRAUqVWIT1pbHfTNxmdjBz0EK39EPxmmQ2LF6i3fvPdJh7I2A9wKgvyEAIXUDUjYgBPSNuGAr0SrZiEHrF2wFUN9tZ4ZL9oroEQCMaGHFnjZhF-LMXXzglA7ZI_E0cfrhcuT1g9kt4bcrIUUeIi9b5GsX3UNwkW8OcaaCkX_CpXzgGX8FCuW0dortXXYzRqRA77jPRypu4X6Lu0AlH5-BMya_zSmmJc3HE9btK6nga_Zycgvh9d97xb5_vt2svzb3377crT_eN072sjSDGMbJDKNQ_Wi0lF0vpDet6ISTWmndmX5E1Q7YezXi5FU_GfDKdV4b43BSV-zteXef088DUrGPVUGsSFsBSredAFlT8pzyORFlnOw-h53LRyvAnuzbs31b7dtn-1bUkjqXqIbjjPnf9H9afwBekYoT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723645102</pqid></control><display><type>article</type><title>Timing and sources of skarn mineralization in the Canadian Tungsten Belt: revisiting the paragenesis, crystal chemistry and geochronology of apatite</title><source>SpringerLink Journals - AutoHoldings</source><creator>Roy-Garand, Andree ; Adlakha, Erin ; Hanley, Jacob ; Elongo, Vanessa ; Lecumberri-Sanchez, Pilar ; Falck, Hendrik ; Boucher, Brandon</creator><creatorcontrib>Roy-Garand, Andree ; Adlakha, Erin ; Hanley, Jacob ; Elongo, Vanessa ; Lecumberri-Sanchez, Pilar ; Falck, Hendrik ; Boucher, Brandon</creatorcontrib><description>Five generations of fluorapatite in mineralized skarn and host rocks from the Mactung W (Cu-Au) deposit, Northwest Territories, Canada, are identified based on petrographic, compositional and geochronological (U–Pb) data. These data, coupled with new (in this study) and previously published data on apatite from the nearby Cantung deposit, provide constraints on the timing of skarn mineralization, as well as metal and fluid sources of the Canadian Tungsten Belt. Type-i apatite of the Mactung deposit formed from ~ 106 ± 4 to 103 ± 2 Ma through recrystallization of sedimentary apatite (type-o apatite) during regional metamorphism, pre-skarnification. Type-i apatite is W-rich (up to 47.6 ppm) and occurs with coeval scheelite and titanite, indicating a potential sedimentary source, perhaps from detrital rutile, for W. Apatite crystals in prograde (type-ii) and retrograde (type-iii and type-iv) skarns yield ages from ~ 96 ± 1 to 92 ± 1 Ma, overlapping with Mactung biotite-granite plutons and late-stage felsic dykes and confirming skarn formation during emplacement of the granites over a period of ~ 5 million years. Type-ii apatite contains high rare earth element that increases with increasingly negative Eu anomalies, suggesting prograde fluids were sourced from a felsic melt undergoing fractional crystallization. Retrograde apatite exhibits weak lanthanide tetrad effects with superchondritic Y/Ho ratios (> 38), suggesting retrograde fluids exsolved from a highly evolved magmatic source. Apatite crystals from the Cantung skarn deposit are compositionally and paragenetically similar to those from the Mactung apatite and yield ages similar to the Cantung biotite-monzogranite plutons and late-stage felsic dykes. We conclude prograde fluids were derived from biotite-granites, whereas retrograde fluids exsolved from evolved melts recorded by later felsic dykes.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-022-01107-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anomalies ; Apatite ; Belts ; Biotite ; Copper ; Crystallization ; Crystals ; Earth and Environmental Science ; Earth Sciences ; Fluids ; Fluorapatite ; Fractional crystallization ; Geochronology ; Geochronometry ; Geology ; Gold ; Granite ; Heavy metals ; Igneous rocks ; Isotopes ; Metamorphism ; Mineral Resources ; Mineralization ; Mineralogy ; Plutons ; Rare earth elements ; Recrystallization ; Rock intrusions ; Rutile ; Scheelite ; Titanite ; Tungsten</subject><ispartof>Mineralium deposita, 2022-11, Vol.57 (8), p.1391-1413</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a272t-818bf98b137b96225712c94151a26366597be348e7c3befc37f90c3a5c699aef3</citedby><cites>FETCH-LOGICAL-a272t-818bf98b137b96225712c94151a26366597be348e7c3befc37f90c3a5c699aef3</cites><orcidid>0000-0002-6696-8036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-022-01107-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-022-01107-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Roy-Garand, Andree</creatorcontrib><creatorcontrib>Adlakha, Erin</creatorcontrib><creatorcontrib>Hanley, Jacob</creatorcontrib><creatorcontrib>Elongo, Vanessa</creatorcontrib><creatorcontrib>Lecumberri-Sanchez, Pilar</creatorcontrib><creatorcontrib>Falck, Hendrik</creatorcontrib><creatorcontrib>Boucher, Brandon</creatorcontrib><title>Timing and sources of skarn mineralization in the Canadian Tungsten Belt: revisiting the paragenesis, crystal chemistry and geochronology of apatite</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Five generations of fluorapatite in mineralized skarn and host rocks from the Mactung W (Cu-Au) deposit, Northwest Territories, Canada, are identified based on petrographic, compositional and geochronological (U–Pb) data. These data, coupled with new (in this study) and previously published data on apatite from the nearby Cantung deposit, provide constraints on the timing of skarn mineralization, as well as metal and fluid sources of the Canadian Tungsten Belt. Type-i apatite of the Mactung deposit formed from ~ 106 ± 4 to 103 ± 2 Ma through recrystallization of sedimentary apatite (type-o apatite) during regional metamorphism, pre-skarnification. Type-i apatite is W-rich (up to 47.6 ppm) and occurs with coeval scheelite and titanite, indicating a potential sedimentary source, perhaps from detrital rutile, for W. Apatite crystals in prograde (type-ii) and retrograde (type-iii and type-iv) skarns yield ages from ~ 96 ± 1 to 92 ± 1 Ma, overlapping with Mactung biotite-granite plutons and late-stage felsic dykes and confirming skarn formation during emplacement of the granites over a period of ~ 5 million years. Type-ii apatite contains high rare earth element that increases with increasingly negative Eu anomalies, suggesting prograde fluids were sourced from a felsic melt undergoing fractional crystallization. Retrograde apatite exhibits weak lanthanide tetrad effects with superchondritic Y/Ho ratios (> 38), suggesting retrograde fluids exsolved from a highly evolved magmatic source. Apatite crystals from the Cantung skarn deposit are compositionally and paragenetically similar to those from the Mactung apatite and yield ages similar to the Cantung biotite-monzogranite plutons and late-stage felsic dykes. We conclude prograde fluids were derived from biotite-granites, whereas retrograde fluids exsolved from evolved melts recorded by later felsic dykes.</description><subject>Anomalies</subject><subject>Apatite</subject><subject>Belts</subject><subject>Biotite</subject><subject>Copper</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluids</subject><subject>Fluorapatite</subject><subject>Fractional crystallization</subject><subject>Geochronology</subject><subject>Geochronometry</subject><subject>Geology</subject><subject>Gold</subject><subject>Granite</subject><subject>Heavy metals</subject><subject>Igneous rocks</subject><subject>Isotopes</subject><subject>Metamorphism</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Plutons</subject><subject>Rare earth elements</subject><subject>Recrystallization</subject><subject>Rock intrusions</subject><subject>Rutile</subject><subject>Scheelite</subject><subject>Titanite</subject><subject>Tungsten</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFuEzEURa0KpIbSH2BliS1Dn-0Zz5gdRAUqVWIT1pbHfTNxmdjBz0EK39EPxmmQ2LF6i3fvPdJh7I2A9wKgvyEAIXUDUjYgBPSNuGAr0SrZiEHrF2wFUN9tZ4ZL9oroEQCMaGHFnjZhF-LMXXzglA7ZI_E0cfrhcuT1g9kt4bcrIUUeIi9b5GsX3UNwkW8OcaaCkX_CpXzgGX8FCuW0dortXXYzRqRA77jPRypu4X6Lu0AlH5-BMya_zSmmJc3HE9btK6nga_Zycgvh9d97xb5_vt2svzb3377crT_eN072sjSDGMbJDKNQ_Wi0lF0vpDet6ISTWmndmX5E1Q7YezXi5FU_GfDKdV4b43BSV-zteXef088DUrGPVUGsSFsBSredAFlT8pzyORFlnOw-h53LRyvAnuzbs31b7dtn-1bUkjqXqIbjjPnf9H9afwBekYoT</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Roy-Garand, Andree</creator><creator>Adlakha, Erin</creator><creator>Hanley, Jacob</creator><creator>Elongo, Vanessa</creator><creator>Lecumberri-Sanchez, Pilar</creator><creator>Falck, Hendrik</creator><creator>Boucher, Brandon</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6696-8036</orcidid></search><sort><creationdate>20221101</creationdate><title>Timing and sources of skarn mineralization in the Canadian Tungsten Belt: revisiting the paragenesis, crystal chemistry and geochronology of apatite</title><author>Roy-Garand, Andree ; Adlakha, Erin ; Hanley, Jacob ; Elongo, Vanessa ; Lecumberri-Sanchez, Pilar ; Falck, Hendrik ; Boucher, Brandon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a272t-818bf98b137b96225712c94151a26366597be348e7c3befc37f90c3a5c699aef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Apatite</topic><topic>Belts</topic><topic>Biotite</topic><topic>Copper</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluids</topic><topic>Fluorapatite</topic><topic>Fractional crystallization</topic><topic>Geochronology</topic><topic>Geochronometry</topic><topic>Geology</topic><topic>Gold</topic><topic>Granite</topic><topic>Heavy metals</topic><topic>Igneous rocks</topic><topic>Isotopes</topic><topic>Metamorphism</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Plutons</topic><topic>Rare earth elements</topic><topic>Recrystallization</topic><topic>Rock intrusions</topic><topic>Rutile</topic><topic>Scheelite</topic><topic>Titanite</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy-Garand, Andree</creatorcontrib><creatorcontrib>Adlakha, Erin</creatorcontrib><creatorcontrib>Hanley, Jacob</creatorcontrib><creatorcontrib>Elongo, Vanessa</creatorcontrib><creatorcontrib>Lecumberri-Sanchez, Pilar</creatorcontrib><creatorcontrib>Falck, Hendrik</creatorcontrib><creatorcontrib>Boucher, Brandon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy-Garand, Andree</au><au>Adlakha, Erin</au><au>Hanley, Jacob</au><au>Elongo, Vanessa</au><au>Lecumberri-Sanchez, Pilar</au><au>Falck, Hendrik</au><au>Boucher, Brandon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timing and sources of skarn mineralization in the Canadian Tungsten Belt: revisiting the paragenesis, crystal chemistry and geochronology of apatite</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>57</volume><issue>8</issue><spage>1391</spage><epage>1413</epage><pages>1391-1413</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>Five generations of fluorapatite in mineralized skarn and host rocks from the Mactung W (Cu-Au) deposit, Northwest Territories, Canada, are identified based on petrographic, compositional and geochronological (U–Pb) data. These data, coupled with new (in this study) and previously published data on apatite from the nearby Cantung deposit, provide constraints on the timing of skarn mineralization, as well as metal and fluid sources of the Canadian Tungsten Belt. Type-i apatite of the Mactung deposit formed from ~ 106 ± 4 to 103 ± 2 Ma through recrystallization of sedimentary apatite (type-o apatite) during regional metamorphism, pre-skarnification. Type-i apatite is W-rich (up to 47.6 ppm) and occurs with coeval scheelite and titanite, indicating a potential sedimentary source, perhaps from detrital rutile, for W. Apatite crystals in prograde (type-ii) and retrograde (type-iii and type-iv) skarns yield ages from ~ 96 ± 1 to 92 ± 1 Ma, overlapping with Mactung biotite-granite plutons and late-stage felsic dykes and confirming skarn formation during emplacement of the granites over a period of ~ 5 million years. Type-ii apatite contains high rare earth element that increases with increasingly negative Eu anomalies, suggesting prograde fluids were sourced from a felsic melt undergoing fractional crystallization. Retrograde apatite exhibits weak lanthanide tetrad effects with superchondritic Y/Ho ratios (> 38), suggesting retrograde fluids exsolved from a highly evolved magmatic source. Apatite crystals from the Cantung skarn deposit are compositionally and paragenetically similar to those from the Mactung apatite and yield ages similar to the Cantung biotite-monzogranite plutons and late-stage felsic dykes. We conclude prograde fluids were derived from biotite-granites, whereas retrograde fluids exsolved from evolved melts recorded by later felsic dykes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-022-01107-1</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6696-8036</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-4598 |
ispartof | Mineralium deposita, 2022-11, Vol.57 (8), p.1391-1413 |
issn | 0026-4598 1432-1866 |
language | eng |
recordid | cdi_proquest_journals_2723645102 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anomalies Apatite Belts Biotite Copper Crystallization Crystals Earth and Environmental Science Earth Sciences Fluids Fluorapatite Fractional crystallization Geochronology Geochronometry Geology Gold Granite Heavy metals Igneous rocks Isotopes Metamorphism Mineral Resources Mineralization Mineralogy Plutons Rare earth elements Recrystallization Rock intrusions Rutile Scheelite Titanite Tungsten |
title | Timing and sources of skarn mineralization in the Canadian Tungsten Belt: revisiting the paragenesis, crystal chemistry and geochronology of apatite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timing%20and%20sources%20of%20skarn%20mineralization%20in%20the%20Canadian%20Tungsten%20Belt:%20revisiting%20the%20paragenesis,%20crystal%20chemistry%20and%20geochronology%20of%20apatite&rft.jtitle=Mineralium%20deposita&rft.au=Roy-Garand,%20Andree&rft.date=2022-11-01&rft.volume=57&rft.issue=8&rft.spage=1391&rft.epage=1413&rft.pages=1391-1413&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-022-01107-1&rft_dat=%3Cproquest_cross%3E2723645102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723645102&rft_id=info:pmid/&rfr_iscdi=true |