Timing and sources of skarn mineralization in the Canadian Tungsten Belt: revisiting the paragenesis, crystal chemistry and geochronology of apatite

Five generations of fluorapatite in mineralized skarn and host rocks from the Mactung W (Cu-Au) deposit, Northwest Territories, Canada, are identified based on petrographic, compositional and geochronological (U–Pb) data. These data, coupled with new (in this study) and previously published data on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralium deposita 2022-11, Vol.57 (8), p.1391-1413
Hauptverfasser: Roy-Garand, Andree, Adlakha, Erin, Hanley, Jacob, Elongo, Vanessa, Lecumberri-Sanchez, Pilar, Falck, Hendrik, Boucher, Brandon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1413
container_issue 8
container_start_page 1391
container_title Mineralium deposita
container_volume 57
creator Roy-Garand, Andree
Adlakha, Erin
Hanley, Jacob
Elongo, Vanessa
Lecumberri-Sanchez, Pilar
Falck, Hendrik
Boucher, Brandon
description Five generations of fluorapatite in mineralized skarn and host rocks from the Mactung W (Cu-Au) deposit, Northwest Territories, Canada, are identified based on petrographic, compositional and geochronological (U–Pb) data. These data, coupled with new (in this study) and previously published data on apatite from the nearby Cantung deposit, provide constraints on the timing of skarn mineralization, as well as metal and fluid sources of the Canadian Tungsten Belt. Type-i apatite of the Mactung deposit formed from ~ 106 ± 4 to 103 ± 2 Ma through recrystallization of sedimentary apatite (type-o apatite) during regional metamorphism, pre-skarnification. Type-i apatite is W-rich (up to 47.6 ppm) and occurs with coeval scheelite and titanite, indicating a potential sedimentary source, perhaps from detrital rutile, for W. Apatite crystals in prograde (type-ii) and retrograde (type-iii and type-iv) skarns yield ages from ~ 96 ± 1 to 92 ± 1 Ma, overlapping with Mactung biotite-granite plutons and late-stage felsic dykes and confirming skarn formation during emplacement of the granites over a period of ~ 5 million years. Type-ii apatite contains high rare earth element that increases with increasingly negative Eu anomalies, suggesting prograde fluids were sourced from a felsic melt undergoing fractional crystallization. Retrograde apatite exhibits weak lanthanide tetrad effects with superchondritic Y/Ho ratios (> 38), suggesting retrograde fluids exsolved from a highly evolved magmatic source. Apatite crystals from the Cantung skarn deposit are compositionally and paragenetically similar to those from the Mactung apatite and yield ages similar to the Cantung biotite-monzogranite plutons and late-stage felsic dykes. We conclude prograde fluids were derived from biotite-granites, whereas retrograde fluids exsolved from evolved melts recorded by later felsic dykes.
doi_str_mv 10.1007/s00126-022-01107-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723645102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723645102</sourcerecordid><originalsourceid>FETCH-LOGICAL-a272t-818bf98b137b96225712c94151a26366597be348e7c3befc37f90c3a5c699aef3</originalsourceid><addsrcrecordid>eNp9kMFuEzEURa0KpIbSH2BliS1Dn-0Zz5gdRAUqVWIT1pbHfTNxmdjBz0EK39EPxmmQ2LF6i3fvPdJh7I2A9wKgvyEAIXUDUjYgBPSNuGAr0SrZiEHrF2wFUN9tZ4ZL9oroEQCMaGHFnjZhF-LMXXzglA7ZI_E0cfrhcuT1g9kt4bcrIUUeIi9b5GsX3UNwkW8OcaaCkX_CpXzgGX8FCuW0dortXXYzRqRA77jPRypu4X6Lu0AlH5-BMya_zSmmJc3HE9btK6nga_Zycgvh9d97xb5_vt2svzb3377crT_eN072sjSDGMbJDKNQ_Wi0lF0vpDet6ISTWmndmX5E1Q7YezXi5FU_GfDKdV4b43BSV-zteXef088DUrGPVUGsSFsBSredAFlT8pzyORFlnOw-h53LRyvAnuzbs31b7dtn-1bUkjqXqIbjjPnf9H9afwBekYoT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723645102</pqid></control><display><type>article</type><title>Timing and sources of skarn mineralization in the Canadian Tungsten Belt: revisiting the paragenesis, crystal chemistry and geochronology of apatite</title><source>SpringerLink Journals - AutoHoldings</source><creator>Roy-Garand, Andree ; Adlakha, Erin ; Hanley, Jacob ; Elongo, Vanessa ; Lecumberri-Sanchez, Pilar ; Falck, Hendrik ; Boucher, Brandon</creator><creatorcontrib>Roy-Garand, Andree ; Adlakha, Erin ; Hanley, Jacob ; Elongo, Vanessa ; Lecumberri-Sanchez, Pilar ; Falck, Hendrik ; Boucher, Brandon</creatorcontrib><description>Five generations of fluorapatite in mineralized skarn and host rocks from the Mactung W (Cu-Au) deposit, Northwest Territories, Canada, are identified based on petrographic, compositional and geochronological (U–Pb) data. These data, coupled with new (in this study) and previously published data on apatite from the nearby Cantung deposit, provide constraints on the timing of skarn mineralization, as well as metal and fluid sources of the Canadian Tungsten Belt. Type-i apatite of the Mactung deposit formed from ~ 106 ± 4 to 103 ± 2 Ma through recrystallization of sedimentary apatite (type-o apatite) during regional metamorphism, pre-skarnification. Type-i apatite is W-rich (up to 47.6 ppm) and occurs with coeval scheelite and titanite, indicating a potential sedimentary source, perhaps from detrital rutile, for W. Apatite crystals in prograde (type-ii) and retrograde (type-iii and type-iv) skarns yield ages from ~ 96 ± 1 to 92 ± 1 Ma, overlapping with Mactung biotite-granite plutons and late-stage felsic dykes and confirming skarn formation during emplacement of the granites over a period of ~ 5 million years. Type-ii apatite contains high rare earth element that increases with increasingly negative Eu anomalies, suggesting prograde fluids were sourced from a felsic melt undergoing fractional crystallization. Retrograde apatite exhibits weak lanthanide tetrad effects with superchondritic Y/Ho ratios (&gt; 38), suggesting retrograde fluids exsolved from a highly evolved magmatic source. Apatite crystals from the Cantung skarn deposit are compositionally and paragenetically similar to those from the Mactung apatite and yield ages similar to the Cantung biotite-monzogranite plutons and late-stage felsic dykes. We conclude prograde fluids were derived from biotite-granites, whereas retrograde fluids exsolved from evolved melts recorded by later felsic dykes.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-022-01107-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anomalies ; Apatite ; Belts ; Biotite ; Copper ; Crystallization ; Crystals ; Earth and Environmental Science ; Earth Sciences ; Fluids ; Fluorapatite ; Fractional crystallization ; Geochronology ; Geochronometry ; Geology ; Gold ; Granite ; Heavy metals ; Igneous rocks ; Isotopes ; Metamorphism ; Mineral Resources ; Mineralization ; Mineralogy ; Plutons ; Rare earth elements ; Recrystallization ; Rock intrusions ; Rutile ; Scheelite ; Titanite ; Tungsten</subject><ispartof>Mineralium deposita, 2022-11, Vol.57 (8), p.1391-1413</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a272t-818bf98b137b96225712c94151a26366597be348e7c3befc37f90c3a5c699aef3</citedby><cites>FETCH-LOGICAL-a272t-818bf98b137b96225712c94151a26366597be348e7c3befc37f90c3a5c699aef3</cites><orcidid>0000-0002-6696-8036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-022-01107-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-022-01107-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Roy-Garand, Andree</creatorcontrib><creatorcontrib>Adlakha, Erin</creatorcontrib><creatorcontrib>Hanley, Jacob</creatorcontrib><creatorcontrib>Elongo, Vanessa</creatorcontrib><creatorcontrib>Lecumberri-Sanchez, Pilar</creatorcontrib><creatorcontrib>Falck, Hendrik</creatorcontrib><creatorcontrib>Boucher, Brandon</creatorcontrib><title>Timing and sources of skarn mineralization in the Canadian Tungsten Belt: revisiting the paragenesis, crystal chemistry and geochronology of apatite</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Five generations of fluorapatite in mineralized skarn and host rocks from the Mactung W (Cu-Au) deposit, Northwest Territories, Canada, are identified based on petrographic, compositional and geochronological (U–Pb) data. These data, coupled with new (in this study) and previously published data on apatite from the nearby Cantung deposit, provide constraints on the timing of skarn mineralization, as well as metal and fluid sources of the Canadian Tungsten Belt. Type-i apatite of the Mactung deposit formed from ~ 106 ± 4 to 103 ± 2 Ma through recrystallization of sedimentary apatite (type-o apatite) during regional metamorphism, pre-skarnification. Type-i apatite is W-rich (up to 47.6 ppm) and occurs with coeval scheelite and titanite, indicating a potential sedimentary source, perhaps from detrital rutile, for W. Apatite crystals in prograde (type-ii) and retrograde (type-iii and type-iv) skarns yield ages from ~ 96 ± 1 to 92 ± 1 Ma, overlapping with Mactung biotite-granite plutons and late-stage felsic dykes and confirming skarn formation during emplacement of the granites over a period of ~ 5 million years. Type-ii apatite contains high rare earth element that increases with increasingly negative Eu anomalies, suggesting prograde fluids were sourced from a felsic melt undergoing fractional crystallization. Retrograde apatite exhibits weak lanthanide tetrad effects with superchondritic Y/Ho ratios (&gt; 38), suggesting retrograde fluids exsolved from a highly evolved magmatic source. Apatite crystals from the Cantung skarn deposit are compositionally and paragenetically similar to those from the Mactung apatite and yield ages similar to the Cantung biotite-monzogranite plutons and late-stage felsic dykes. We conclude prograde fluids were derived from biotite-granites, whereas retrograde fluids exsolved from evolved melts recorded by later felsic dykes.</description><subject>Anomalies</subject><subject>Apatite</subject><subject>Belts</subject><subject>Biotite</subject><subject>Copper</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluids</subject><subject>Fluorapatite</subject><subject>Fractional crystallization</subject><subject>Geochronology</subject><subject>Geochronometry</subject><subject>Geology</subject><subject>Gold</subject><subject>Granite</subject><subject>Heavy metals</subject><subject>Igneous rocks</subject><subject>Isotopes</subject><subject>Metamorphism</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Plutons</subject><subject>Rare earth elements</subject><subject>Recrystallization</subject><subject>Rock intrusions</subject><subject>Rutile</subject><subject>Scheelite</subject><subject>Titanite</subject><subject>Tungsten</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFuEzEURa0KpIbSH2BliS1Dn-0Zz5gdRAUqVWIT1pbHfTNxmdjBz0EK39EPxmmQ2LF6i3fvPdJh7I2A9wKgvyEAIXUDUjYgBPSNuGAr0SrZiEHrF2wFUN9tZ4ZL9oroEQCMaGHFnjZhF-LMXXzglA7ZI_E0cfrhcuT1g9kt4bcrIUUeIi9b5GsX3UNwkW8OcaaCkX_CpXzgGX8FCuW0dortXXYzRqRA77jPRypu4X6Lu0AlH5-BMya_zSmmJc3HE9btK6nga_Zycgvh9d97xb5_vt2svzb3377crT_eN072sjSDGMbJDKNQ_Wi0lF0vpDet6ISTWmndmX5E1Q7YezXi5FU_GfDKdV4b43BSV-zteXef088DUrGPVUGsSFsBSredAFlT8pzyORFlnOw-h53LRyvAnuzbs31b7dtn-1bUkjqXqIbjjPnf9H9afwBekYoT</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Roy-Garand, Andree</creator><creator>Adlakha, Erin</creator><creator>Hanley, Jacob</creator><creator>Elongo, Vanessa</creator><creator>Lecumberri-Sanchez, Pilar</creator><creator>Falck, Hendrik</creator><creator>Boucher, Brandon</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6696-8036</orcidid></search><sort><creationdate>20221101</creationdate><title>Timing and sources of skarn mineralization in the Canadian Tungsten Belt: revisiting the paragenesis, crystal chemistry and geochronology of apatite</title><author>Roy-Garand, Andree ; Adlakha, Erin ; Hanley, Jacob ; Elongo, Vanessa ; Lecumberri-Sanchez, Pilar ; Falck, Hendrik ; Boucher, Brandon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a272t-818bf98b137b96225712c94151a26366597be348e7c3befc37f90c3a5c699aef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Apatite</topic><topic>Belts</topic><topic>Biotite</topic><topic>Copper</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluids</topic><topic>Fluorapatite</topic><topic>Fractional crystallization</topic><topic>Geochronology</topic><topic>Geochronometry</topic><topic>Geology</topic><topic>Gold</topic><topic>Granite</topic><topic>Heavy metals</topic><topic>Igneous rocks</topic><topic>Isotopes</topic><topic>Metamorphism</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Plutons</topic><topic>Rare earth elements</topic><topic>Recrystallization</topic><topic>Rock intrusions</topic><topic>Rutile</topic><topic>Scheelite</topic><topic>Titanite</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy-Garand, Andree</creatorcontrib><creatorcontrib>Adlakha, Erin</creatorcontrib><creatorcontrib>Hanley, Jacob</creatorcontrib><creatorcontrib>Elongo, Vanessa</creatorcontrib><creatorcontrib>Lecumberri-Sanchez, Pilar</creatorcontrib><creatorcontrib>Falck, Hendrik</creatorcontrib><creatorcontrib>Boucher, Brandon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy-Garand, Andree</au><au>Adlakha, Erin</au><au>Hanley, Jacob</au><au>Elongo, Vanessa</au><au>Lecumberri-Sanchez, Pilar</au><au>Falck, Hendrik</au><au>Boucher, Brandon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timing and sources of skarn mineralization in the Canadian Tungsten Belt: revisiting the paragenesis, crystal chemistry and geochronology of apatite</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>57</volume><issue>8</issue><spage>1391</spage><epage>1413</epage><pages>1391-1413</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>Five generations of fluorapatite in mineralized skarn and host rocks from the Mactung W (Cu-Au) deposit, Northwest Territories, Canada, are identified based on petrographic, compositional and geochronological (U–Pb) data. These data, coupled with new (in this study) and previously published data on apatite from the nearby Cantung deposit, provide constraints on the timing of skarn mineralization, as well as metal and fluid sources of the Canadian Tungsten Belt. Type-i apatite of the Mactung deposit formed from ~ 106 ± 4 to 103 ± 2 Ma through recrystallization of sedimentary apatite (type-o apatite) during regional metamorphism, pre-skarnification. Type-i apatite is W-rich (up to 47.6 ppm) and occurs with coeval scheelite and titanite, indicating a potential sedimentary source, perhaps from detrital rutile, for W. Apatite crystals in prograde (type-ii) and retrograde (type-iii and type-iv) skarns yield ages from ~ 96 ± 1 to 92 ± 1 Ma, overlapping with Mactung biotite-granite plutons and late-stage felsic dykes and confirming skarn formation during emplacement of the granites over a period of ~ 5 million years. Type-ii apatite contains high rare earth element that increases with increasingly negative Eu anomalies, suggesting prograde fluids were sourced from a felsic melt undergoing fractional crystallization. Retrograde apatite exhibits weak lanthanide tetrad effects with superchondritic Y/Ho ratios (&gt; 38), suggesting retrograde fluids exsolved from a highly evolved magmatic source. Apatite crystals from the Cantung skarn deposit are compositionally and paragenetically similar to those from the Mactung apatite and yield ages similar to the Cantung biotite-monzogranite plutons and late-stage felsic dykes. We conclude prograde fluids were derived from biotite-granites, whereas retrograde fluids exsolved from evolved melts recorded by later felsic dykes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-022-01107-1</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6696-8036</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-4598
ispartof Mineralium deposita, 2022-11, Vol.57 (8), p.1391-1413
issn 0026-4598
1432-1866
language eng
recordid cdi_proquest_journals_2723645102
source SpringerLink Journals - AutoHoldings
subjects Anomalies
Apatite
Belts
Biotite
Copper
Crystallization
Crystals
Earth and Environmental Science
Earth Sciences
Fluids
Fluorapatite
Fractional crystallization
Geochronology
Geochronometry
Geology
Gold
Granite
Heavy metals
Igneous rocks
Isotopes
Metamorphism
Mineral Resources
Mineralization
Mineralogy
Plutons
Rare earth elements
Recrystallization
Rock intrusions
Rutile
Scheelite
Titanite
Tungsten
title Timing and sources of skarn mineralization in the Canadian Tungsten Belt: revisiting the paragenesis, crystal chemistry and geochronology of apatite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timing%20and%20sources%20of%20skarn%20mineralization%20in%20the%20Canadian%20Tungsten%20Belt:%20revisiting%20the%20paragenesis,%20crystal%20chemistry%20and%20geochronology%20of%20apatite&rft.jtitle=Mineralium%20deposita&rft.au=Roy-Garand,%20Andree&rft.date=2022-11-01&rft.volume=57&rft.issue=8&rft.spage=1391&rft.epage=1413&rft.pages=1391-1413&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-022-01107-1&rft_dat=%3Cproquest_cross%3E2723645102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723645102&rft_id=info:pmid/&rfr_iscdi=true