Broadband Multichannel Cylindrical Vector Beam Generation by a Single Metasurface

Beams with spatially‐varying polarization states have been the topic of much interest recently due to the unusual ways in which they can interact with matter. Cylindrical vector beams (CVBs) represent the most commonly used type and feature cylindrically‐symmetric polarization distributions. The opt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2022-10, Vol.16 (10), p.n/a
Hauptverfasser: Wen, Dandan, Pan, Kai, Meng, Jiajun, Wu, Xuanguang, Guo, Xuyue, Li, Peng, Liu, Sheng, Li, Dong, Wei, Bingyan, Xie, Xin, Yang, Dexing, Zhao, Jianlin, Crozier, Kenneth B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Laser & photonics reviews
container_volume 16
creator Wen, Dandan
Pan, Kai
Meng, Jiajun
Wu, Xuanguang
Guo, Xuyue
Li, Peng
Liu, Sheng
Li, Dong
Wei, Bingyan
Xie, Xin
Yang, Dexing
Zhao, Jianlin
Crozier, Kenneth B.
description Beams with spatially‐varying polarization states have been the topic of much interest recently due to the unusual ways in which they can interact with matter. Cylindrical vector beams (CVBs) represent the most commonly used type and feature cylindrically‐symmetric polarization distributions. The optical systems employed thus far for their generation have usually only been able to produce a single CVB. To generate and observe multiple CVBs, bulky optical systems with stringent alignment tolerances have been needed. Here, a method to generate an array of CVBs using a single optical element, namely a transmission‐mode dielectric metasurface, is demonstrated. The incident light is split into an array of left and right‐handed circularly polarized vortex beams that superpose with a controllable phase difference. An array of CVBs with 12 channels over a broad wavelength range is experimentally demonstrated. This study's method produces a significant increase in the number of polarization channels compared to previous reports and solves the long‐standing challenge of unequal intensity distributions. It furthermore improves the flexibility of the vector field control by not only generating CVBs of different orders but also controlling their polarization rotation. This method may pave the way for applications in optical communications, laser machining, and optical trapping. A method to generate an array of cylindrical vector beams (CVBs) using a single transmission‐mode dielectric metasurface is proposed. An array of CVBs with 12 channels over a broad wavelength range is demonstrated. The method produces a significant increase in the number of polarization channels compared to previous reports and solves the long‐standing challenge of unequal intensity distributions.
doi_str_mv 10.1002/lpor.202200206
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723634411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723634411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-467f0b73ea016eb15bfebbd9882bb686010b5d54fa311f2832422868426e1a763</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmNw5RyJc0c-2jQ9sgkG0qbxfY2S1oFMWTrSVqj_nk5D44gvtqXntaUHoUtKJpQQdu23dZwwwtiwEHGERlQKnkhZFMeHWZJTdNY0a0KyocQIPU1jrSujQ4WXnW9d-alDAI9nvXehiq7UHr9D2dYRT0Fv8BwCRN26OmDTY41fXPjwgJfQ6qaLVpdwjk6s9g1c_PYxeru7fZ3dJ4vV_GF2s0hKnuUiSUVuick5aEIFGJoZC8ZUhZTMGCEFocRkVZZazSm1THKWMiaFTJkAqnPBx-hqf3cb668Omlat6y6G4aViOeOCpymlAzXZU2WsmyaCVdvoNjr2ihK106Z22tRB2xAo9oFv56H_h1aLx9XzX_YHjllwoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723634411</pqid></control><display><type>article</type><title>Broadband Multichannel Cylindrical Vector Beam Generation by a Single Metasurface</title><source>Access via Wiley Online Library</source><creator>Wen, Dandan ; Pan, Kai ; Meng, Jiajun ; Wu, Xuanguang ; Guo, Xuyue ; Li, Peng ; Liu, Sheng ; Li, Dong ; Wei, Bingyan ; Xie, Xin ; Yang, Dexing ; Zhao, Jianlin ; Crozier, Kenneth B.</creator><creatorcontrib>Wen, Dandan ; Pan, Kai ; Meng, Jiajun ; Wu, Xuanguang ; Guo, Xuyue ; Li, Peng ; Liu, Sheng ; Li, Dong ; Wei, Bingyan ; Xie, Xin ; Yang, Dexing ; Zhao, Jianlin ; Crozier, Kenneth B.</creatorcontrib><description>Beams with spatially‐varying polarization states have been the topic of much interest recently due to the unusual ways in which they can interact with matter. Cylindrical vector beams (CVBs) represent the most commonly used type and feature cylindrically‐symmetric polarization distributions. The optical systems employed thus far for their generation have usually only been able to produce a single CVB. To generate and observe multiple CVBs, bulky optical systems with stringent alignment tolerances have been needed. Here, a method to generate an array of CVBs using a single optical element, namely a transmission‐mode dielectric metasurface, is demonstrated. The incident light is split into an array of left and right‐handed circularly polarized vortex beams that superpose with a controllable phase difference. An array of CVBs with 12 channels over a broad wavelength range is experimentally demonstrated. This study's method produces a significant increase in the number of polarization channels compared to previous reports and solves the long‐standing challenge of unequal intensity distributions. It furthermore improves the flexibility of the vector field control by not only generating CVBs of different orders but also controlling their polarization rotation. This method may pave the way for applications in optical communications, laser machining, and optical trapping. A method to generate an array of cylindrical vector beams (CVBs) using a single transmission‐mode dielectric metasurface is proposed. An array of CVBs with 12 channels over a broad wavelength range is demonstrated. The method produces a significant increase in the number of polarization channels compared to previous reports and solves the long‐standing challenge of unequal intensity distributions.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202200206</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Arrays ; Broadband ; Channels ; Circular polarization ; Controllability ; cylindrical vector beams ; Electron beams ; Fields (mathematics) ; high order Poincaré spheres ; Incident light ; Laser machining ; Metasurfaces ; multichannels ; Optical communication ; Optical trapping ; Tolerances</subject><ispartof>Laser &amp; photonics reviews, 2022-10, Vol.16 (10), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-467f0b73ea016eb15bfebbd9882bb686010b5d54fa311f2832422868426e1a763</citedby><cites>FETCH-LOGICAL-c3576-467f0b73ea016eb15bfebbd9882bb686010b5d54fa311f2832422868426e1a763</cites><orcidid>0000-0001-5378-5292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.202200206$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.202200206$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wen, Dandan</creatorcontrib><creatorcontrib>Pan, Kai</creatorcontrib><creatorcontrib>Meng, Jiajun</creatorcontrib><creatorcontrib>Wu, Xuanguang</creatorcontrib><creatorcontrib>Guo, Xuyue</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Wei, Bingyan</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Yang, Dexing</creatorcontrib><creatorcontrib>Zhao, Jianlin</creatorcontrib><creatorcontrib>Crozier, Kenneth B.</creatorcontrib><title>Broadband Multichannel Cylindrical Vector Beam Generation by a Single Metasurface</title><title>Laser &amp; photonics reviews</title><description>Beams with spatially‐varying polarization states have been the topic of much interest recently due to the unusual ways in which they can interact with matter. Cylindrical vector beams (CVBs) represent the most commonly used type and feature cylindrically‐symmetric polarization distributions. The optical systems employed thus far for their generation have usually only been able to produce a single CVB. To generate and observe multiple CVBs, bulky optical systems with stringent alignment tolerances have been needed. Here, a method to generate an array of CVBs using a single optical element, namely a transmission‐mode dielectric metasurface, is demonstrated. The incident light is split into an array of left and right‐handed circularly polarized vortex beams that superpose with a controllable phase difference. An array of CVBs with 12 channels over a broad wavelength range is experimentally demonstrated. This study's method produces a significant increase in the number of polarization channels compared to previous reports and solves the long‐standing challenge of unequal intensity distributions. It furthermore improves the flexibility of the vector field control by not only generating CVBs of different orders but also controlling their polarization rotation. This method may pave the way for applications in optical communications, laser machining, and optical trapping. A method to generate an array of cylindrical vector beams (CVBs) using a single transmission‐mode dielectric metasurface is proposed. An array of CVBs with 12 channels over a broad wavelength range is demonstrated. The method produces a significant increase in the number of polarization channels compared to previous reports and solves the long‐standing challenge of unequal intensity distributions.</description><subject>Arrays</subject><subject>Broadband</subject><subject>Channels</subject><subject>Circular polarization</subject><subject>Controllability</subject><subject>cylindrical vector beams</subject><subject>Electron beams</subject><subject>Fields (mathematics)</subject><subject>high order Poincaré spheres</subject><subject>Incident light</subject><subject>Laser machining</subject><subject>Metasurfaces</subject><subject>multichannels</subject><subject>Optical communication</subject><subject>Optical trapping</subject><subject>Tolerances</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmNw5RyJc0c-2jQ9sgkG0qbxfY2S1oFMWTrSVqj_nk5D44gvtqXntaUHoUtKJpQQdu23dZwwwtiwEHGERlQKnkhZFMeHWZJTdNY0a0KyocQIPU1jrSujQ4WXnW9d-alDAI9nvXehiq7UHr9D2dYRT0Fv8BwCRN26OmDTY41fXPjwgJfQ6qaLVpdwjk6s9g1c_PYxeru7fZ3dJ4vV_GF2s0hKnuUiSUVuick5aEIFGJoZC8ZUhZTMGCEFocRkVZZazSm1THKWMiaFTJkAqnPBx-hqf3cb668Omlat6y6G4aViOeOCpymlAzXZU2WsmyaCVdvoNjr2ihK106Z22tRB2xAo9oFv56H_h1aLx9XzX_YHjllwoQ</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Wen, Dandan</creator><creator>Pan, Kai</creator><creator>Meng, Jiajun</creator><creator>Wu, Xuanguang</creator><creator>Guo, Xuyue</creator><creator>Li, Peng</creator><creator>Liu, Sheng</creator><creator>Li, Dong</creator><creator>Wei, Bingyan</creator><creator>Xie, Xin</creator><creator>Yang, Dexing</creator><creator>Zhao, Jianlin</creator><creator>Crozier, Kenneth B.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5378-5292</orcidid></search><sort><creationdate>202210</creationdate><title>Broadband Multichannel Cylindrical Vector Beam Generation by a Single Metasurface</title><author>Wen, Dandan ; Pan, Kai ; Meng, Jiajun ; Wu, Xuanguang ; Guo, Xuyue ; Li, Peng ; Liu, Sheng ; Li, Dong ; Wei, Bingyan ; Xie, Xin ; Yang, Dexing ; Zhao, Jianlin ; Crozier, Kenneth B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-467f0b73ea016eb15bfebbd9882bb686010b5d54fa311f2832422868426e1a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Broadband</topic><topic>Channels</topic><topic>Circular polarization</topic><topic>Controllability</topic><topic>cylindrical vector beams</topic><topic>Electron beams</topic><topic>Fields (mathematics)</topic><topic>high order Poincaré spheres</topic><topic>Incident light</topic><topic>Laser machining</topic><topic>Metasurfaces</topic><topic>multichannels</topic><topic>Optical communication</topic><topic>Optical trapping</topic><topic>Tolerances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Dandan</creatorcontrib><creatorcontrib>Pan, Kai</creatorcontrib><creatorcontrib>Meng, Jiajun</creatorcontrib><creatorcontrib>Wu, Xuanguang</creatorcontrib><creatorcontrib>Guo, Xuyue</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Wei, Bingyan</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Yang, Dexing</creatorcontrib><creatorcontrib>Zhao, Jianlin</creatorcontrib><creatorcontrib>Crozier, Kenneth B.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Dandan</au><au>Pan, Kai</au><au>Meng, Jiajun</au><au>Wu, Xuanguang</au><au>Guo, Xuyue</au><au>Li, Peng</au><au>Liu, Sheng</au><au>Li, Dong</au><au>Wei, Bingyan</au><au>Xie, Xin</au><au>Yang, Dexing</au><au>Zhao, Jianlin</au><au>Crozier, Kenneth B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Multichannel Cylindrical Vector Beam Generation by a Single Metasurface</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2022-10</date><risdate>2022</risdate><volume>16</volume><issue>10</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Beams with spatially‐varying polarization states have been the topic of much interest recently due to the unusual ways in which they can interact with matter. Cylindrical vector beams (CVBs) represent the most commonly used type and feature cylindrically‐symmetric polarization distributions. The optical systems employed thus far for their generation have usually only been able to produce a single CVB. To generate and observe multiple CVBs, bulky optical systems with stringent alignment tolerances have been needed. Here, a method to generate an array of CVBs using a single optical element, namely a transmission‐mode dielectric metasurface, is demonstrated. The incident light is split into an array of left and right‐handed circularly polarized vortex beams that superpose with a controllable phase difference. An array of CVBs with 12 channels over a broad wavelength range is experimentally demonstrated. This study's method produces a significant increase in the number of polarization channels compared to previous reports and solves the long‐standing challenge of unequal intensity distributions. It furthermore improves the flexibility of the vector field control by not only generating CVBs of different orders but also controlling their polarization rotation. This method may pave the way for applications in optical communications, laser machining, and optical trapping. A method to generate an array of cylindrical vector beams (CVBs) using a single transmission‐mode dielectric metasurface is proposed. An array of CVBs with 12 channels over a broad wavelength range is demonstrated. The method produces a significant increase in the number of polarization channels compared to previous reports and solves the long‐standing challenge of unequal intensity distributions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202200206</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5378-5292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2022-10, Vol.16 (10), p.n/a
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_2723634411
source Access via Wiley Online Library
subjects Arrays
Broadband
Channels
Circular polarization
Controllability
cylindrical vector beams
Electron beams
Fields (mathematics)
high order Poincaré spheres
Incident light
Laser machining
Metasurfaces
multichannels
Optical communication
Optical trapping
Tolerances
title Broadband Multichannel Cylindrical Vector Beam Generation by a Single Metasurface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Multichannel%20Cylindrical%20Vector%20Beam%20Generation%20by%20a%20Single%20Metasurface&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Wen,%20Dandan&rft.date=2022-10&rft.volume=16&rft.issue=10&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202200206&rft_dat=%3Cproquest_cross%3E2723634411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723634411&rft_id=info:pmid/&rfr_iscdi=true