Totally umbilical hypersurfaces of product spaces

Given a Riemannian manifold M ,  and an open interval I ⊂ R , we characterize nontrivial totally umbilical hypersurfaces of the product M × I —as well as of warped products I × ω M —as those which are local graphs built on isoparametric families of totally umbilical hypersurfaces of M . By means of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2022-11, Vol.169 (3-4), p.649-666
Hauptverfasser: de Lima, Ronaldo F., dos Santos, João Paulo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 666
container_issue 3-4
container_start_page 649
container_title Manuscripta mathematica
container_volume 169
creator de Lima, Ronaldo F.
dos Santos, João Paulo
description Given a Riemannian manifold M ,  and an open interval I ⊂ R , we characterize nontrivial totally umbilical hypersurfaces of the product M × I —as well as of warped products I × ω M —as those which are local graphs built on isoparametric families of totally umbilical hypersurfaces of M . By means of this characterization, we fully extend to S n × R and H n × R the results by Souam and Toubiana on the classification of totally umbilical surfaces in S 2 × R and H 2 × R . It is also shown that an analogous classification holds for arbitrary warped products I × ω S n and I × ω H n .
doi_str_mv 10.1007/s00229-021-01339-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723515357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723515357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-77e404ff8db340518162b295acbf84a75e7c174469545cd515c2ad66011cf5483</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoOKdfwFPBc_R58tK0RxnqhIGXeQ5pmmhHt9akhfXbm1nBm6cHnv8b_Ai5RbhHAPUQARgrKTCkgJyX9HhGFig4o6gKeU4WSZeU5YiX5CrGHUASFV8Q3HaDadspG_dV0zbWtNnn1LsQx-CNdTHrfNaHrh7tkMX-9LkmF9600d383iV5f37artZ08_byunrcUMsUDFQpJ0B4X9QVFyCxwJxVrJTGVr4QRkmnLCoh8lIKaWuJ0jJT5zkgWi9FwZfkbu5N81-ji4PedWM4pEnNFOMpwKVKLja7bOhiDM7rPjR7EyaNoE9o9IxGJzT6B40-phCfQzGZDx8u_FX_k_oGuA1lxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723515357</pqid></control><display><type>article</type><title>Totally umbilical hypersurfaces of product spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>de Lima, Ronaldo F. ; dos Santos, João Paulo</creator><creatorcontrib>de Lima, Ronaldo F. ; dos Santos, João Paulo</creatorcontrib><description>Given a Riemannian manifold M ,  and an open interval I ⊂ R , we characterize nontrivial totally umbilical hypersurfaces of the product M × I —as well as of warped products I × ω M —as those which are local graphs built on isoparametric families of totally umbilical hypersurfaces of M . By means of this characterization, we fully extend to S n × R and H n × R the results by Souam and Toubiana on the classification of totally umbilical surfaces in S 2 × R and H 2 × R . It is also shown that an analogous classification holds for arbitrary warped products I × ω S n and I × ω H n .</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-021-01339-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Classification ; Geometry ; Hyperspaces ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Riemann manifold ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2022-11, Vol.169 (3-4), p.649-666</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-77e404ff8db340518162b295acbf84a75e7c174469545cd515c2ad66011cf5483</cites><orcidid>0000-0002-7331-2721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-021-01339-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-021-01339-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>de Lima, Ronaldo F.</creatorcontrib><creatorcontrib>dos Santos, João Paulo</creatorcontrib><title>Totally umbilical hypersurfaces of product spaces</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>Given a Riemannian manifold M ,  and an open interval I ⊂ R , we characterize nontrivial totally umbilical hypersurfaces of the product M × I —as well as of warped products I × ω M —as those which are local graphs built on isoparametric families of totally umbilical hypersurfaces of M . By means of this characterization, we fully extend to S n × R and H n × R the results by Souam and Toubiana on the classification of totally umbilical surfaces in S 2 × R and H 2 × R . It is also shown that an analogous classification holds for arbitrary warped products I × ω S n and I × ω H n .</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classification</subject><subject>Geometry</subject><subject>Hyperspaces</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Riemann manifold</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LwzAYx4MoOKdfwFPBc_R58tK0RxnqhIGXeQ5pmmhHt9akhfXbm1nBm6cHnv8b_Ai5RbhHAPUQARgrKTCkgJyX9HhGFig4o6gKeU4WSZeU5YiX5CrGHUASFV8Q3HaDadspG_dV0zbWtNnn1LsQx-CNdTHrfNaHrh7tkMX-9LkmF9600d383iV5f37artZ08_byunrcUMsUDFQpJ0B4X9QVFyCxwJxVrJTGVr4QRkmnLCoh8lIKaWuJ0jJT5zkgWi9FwZfkbu5N81-ji4PedWM4pEnNFOMpwKVKLja7bOhiDM7rPjR7EyaNoE9o9IxGJzT6B40-phCfQzGZDx8u_FX_k_oGuA1lxA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>de Lima, Ronaldo F.</creator><creator>dos Santos, João Paulo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7331-2721</orcidid></search><sort><creationdate>20221101</creationdate><title>Totally umbilical hypersurfaces of product spaces</title><author>de Lima, Ronaldo F. ; dos Santos, João Paulo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-77e404ff8db340518162b295acbf84a75e7c174469545cd515c2ad66011cf5483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classification</topic><topic>Geometry</topic><topic>Hyperspaces</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Riemann manifold</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Lima, Ronaldo F.</creatorcontrib><creatorcontrib>dos Santos, João Paulo</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Lima, Ronaldo F.</au><au>dos Santos, João Paulo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Totally umbilical hypersurfaces of product spaces</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>169</volume><issue>3-4</issue><spage>649</spage><epage>666</epage><pages>649-666</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>Given a Riemannian manifold M ,  and an open interval I ⊂ R , we characterize nontrivial totally umbilical hypersurfaces of the product M × I —as well as of warped products I × ω M —as those which are local graphs built on isoparametric families of totally umbilical hypersurfaces of M . By means of this characterization, we fully extend to S n × R and H n × R the results by Souam and Toubiana on the classification of totally umbilical surfaces in S 2 × R and H 2 × R . It is also shown that an analogous classification holds for arbitrary warped products I × ω S n and I × ω H n .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-021-01339-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7331-2721</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2022-11, Vol.169 (3-4), p.649-666
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_2723515357
source SpringerLink Journals - AutoHoldings
subjects Algebraic Geometry
Calculus of Variations and Optimal Control
Optimization
Classification
Geometry
Hyperspaces
Lie Groups
Mathematics
Mathematics and Statistics
Number Theory
Riemann manifold
Topological Groups
title Totally umbilical hypersurfaces of product spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Totally%20umbilical%20hypersurfaces%20of%20product%20spaces&rft.jtitle=Manuscripta%20mathematica&rft.au=de%20Lima,%20Ronaldo%20F.&rft.date=2022-11-01&rft.volume=169&rft.issue=3-4&rft.spage=649&rft.epage=666&rft.pages=649-666&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-021-01339-x&rft_dat=%3Cproquest_cross%3E2723515357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723515357&rft_id=info:pmid/&rfr_iscdi=true