Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations

In this paper, we establish the pointwise boundary differentiability on Reifenberg domains for viscosity solutions of fully nonlinear elliptic equations which extends the result under the usual C 1 , Dini condition and generalizes the result for linear equations in Huang et al (Manuscr. Math 162(3–4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2022-11, Vol.169 (3-4), p.549-563
Hauptverfasser: Wu, Duan, Niu, Pengcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 563
container_issue 3-4
container_start_page 549
container_title Manuscripta mathematica
container_volume 169
creator Wu, Duan
Niu, Pengcheng
description In this paper, we establish the pointwise boundary differentiability on Reifenberg domains for viscosity solutions of fully nonlinear elliptic equations which extends the result under the usual C 1 , Dini condition and generalizes the result for linear equations in Huang et al (Manuscr. Math 162(3–4):305–313, 2020). Moreover, our proofs are relatively simple.
doi_str_mv 10.1007/s00229-021-01346-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723515286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723515286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bcb599290f98e048de7b3a73fa5b195a1a2b5c66bd92c4d9c3ac2afe9884103</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOprL3LKU4g0ERd2HJHNSUqZJm8wg8_ZGK7hzdRb_jfMhdMnoNaO0vcmUci4J5YxQJqqGzEdowSrBCWu7-hgtil4T3jB2is5y3lBaxFYskH6NPoyfPgM2cQq9TjPuvXOQIIxeGz_4ccYx4DfwDoKBtMZ93GofMnYxYTcNw4xDDIMPoBOGYfC70VsM-0mPPoZ8jk6cHjJc_N4ler-_-1g9kueXh6fV7TOxgsmRGGtqKbmkTnZAq66H1gjdCqdrw2Stmeamtk1jeslt1UsrtOXagey6ilGxRFeH1l2K-wnyqDZxSqEMKt5yUbOad01x8YPLpphzAqd2yW_Lz4pR9Q1SHUCqAlL9gFRzCYlDKBdzWEP6q_4n9QWZQnk3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723515286</pqid></control><display><type>article</type><title>Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations</title><source>SpringerLink Journals</source><creator>Wu, Duan ; Niu, Pengcheng</creator><creatorcontrib>Wu, Duan ; Niu, Pengcheng</creatorcontrib><description>In this paper, we establish the pointwise boundary differentiability on Reifenberg domains for viscosity solutions of fully nonlinear elliptic equations which extends the result under the usual C 1 , Dini condition and generalizes the result for linear equations in Huang et al (Manuscr. Math 162(3–4):305–313, 2020). Moreover, our proofs are relatively simple.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-021-01346-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Domains ; Elliptic functions ; Geometry ; Lie Groups ; Linear equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Number Theory ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2022-11, Vol.169 (3-4), p.549-563</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bcb599290f98e048de7b3a73fa5b195a1a2b5c66bd92c4d9c3ac2afe9884103</citedby><cites>FETCH-LOGICAL-c319t-bcb599290f98e048de7b3a73fa5b195a1a2b5c66bd92c4d9c3ac2afe9884103</cites><orcidid>0000-0002-5480-3525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-021-01346-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-021-01346-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Duan</creatorcontrib><creatorcontrib>Niu, Pengcheng</creatorcontrib><title>Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>In this paper, we establish the pointwise boundary differentiability on Reifenberg domains for viscosity solutions of fully nonlinear elliptic equations which extends the result under the usual C 1 , Dini condition and generalizes the result for linear equations in Huang et al (Manuscr. Math 162(3–4):305–313, 2020). Moreover, our proofs are relatively simple.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Domains</subject><subject>Elliptic functions</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOprL3LKU4g0ERd2HJHNSUqZJm8wg8_ZGK7hzdRb_jfMhdMnoNaO0vcmUci4J5YxQJqqGzEdowSrBCWu7-hgtil4T3jB2is5y3lBaxFYskH6NPoyfPgM2cQq9TjPuvXOQIIxeGz_4ccYx4DfwDoKBtMZ93GofMnYxYTcNw4xDDIMPoBOGYfC70VsM-0mPPoZ8jk6cHjJc_N4ler-_-1g9kueXh6fV7TOxgsmRGGtqKbmkTnZAq66H1gjdCqdrw2Stmeamtk1jeslt1UsrtOXagey6ilGxRFeH1l2K-wnyqDZxSqEMKt5yUbOad01x8YPLpphzAqd2yW_Lz4pR9Q1SHUCqAlL9gFRzCYlDKBdzWEP6q_4n9QWZQnk3</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Wu, Duan</creator><creator>Niu, Pengcheng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5480-3525</orcidid></search><sort><creationdate>20221101</creationdate><title>Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations</title><author>Wu, Duan ; Niu, Pengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bcb599290f98e048de7b3a73fa5b195a1a2b5c66bd92c4d9c3ac2afe9884103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Domains</topic><topic>Elliptic functions</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Duan</creatorcontrib><creatorcontrib>Niu, Pengcheng</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Duan</au><au>Niu, Pengcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>169</volume><issue>3-4</issue><spage>549</spage><epage>563</epage><pages>549-563</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>In this paper, we establish the pointwise boundary differentiability on Reifenberg domains for viscosity solutions of fully nonlinear elliptic equations which extends the result under the usual C 1 , Dini condition and generalizes the result for linear equations in Huang et al (Manuscr. Math 162(3–4):305–313, 2020). Moreover, our proofs are relatively simple.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-021-01346-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5480-3525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2022-11, Vol.169 (3-4), p.549-563
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_2723515286
source SpringerLink Journals
subjects Algebraic Geometry
Calculus of Variations and Optimal Control
Optimization
Domains
Elliptic functions
Geometry
Lie Groups
Linear equations
Mathematical analysis
Mathematics
Mathematics and Statistics
Number Theory
Topological Groups
title Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pointwise%20boundary%20differentiability%20on%20Reifenberg%20domains%20for%20fully%20nonlinear%20elliptic%20equations&rft.jtitle=Manuscripta%20mathematica&rft.au=Wu,%20Duan&rft.date=2022-11-01&rft.volume=169&rft.issue=3-4&rft.spage=549&rft.epage=563&rft.pages=549-563&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-021-01346-y&rft_dat=%3Cproquest_cross%3E2723515286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723515286&rft_id=info:pmid/&rfr_iscdi=true