Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations
In this paper, we establish the pointwise boundary differentiability on Reifenberg domains for viscosity solutions of fully nonlinear elliptic equations which extends the result under the usual C 1 , Dini condition and generalizes the result for linear equations in Huang et al (Manuscr. Math 162(3–4...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2022-11, Vol.169 (3-4), p.549-563 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 563 |
---|---|
container_issue | 3-4 |
container_start_page | 549 |
container_title | Manuscripta mathematica |
container_volume | 169 |
creator | Wu, Duan Niu, Pengcheng |
description | In this paper, we establish the pointwise boundary differentiability on Reifenberg domains for viscosity solutions of fully nonlinear elliptic equations which extends the result under the usual
C
1
,
Dini
condition and generalizes the result for linear equations in Huang et al (Manuscr. Math 162(3–4):305–313, 2020). Moreover, our proofs are relatively simple. |
doi_str_mv | 10.1007/s00229-021-01346-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723515286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723515286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bcb599290f98e048de7b3a73fa5b195a1a2b5c66bd92c4d9c3ac2afe9884103</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOprL3LKU4g0ERd2HJHNSUqZJm8wg8_ZGK7hzdRb_jfMhdMnoNaO0vcmUci4J5YxQJqqGzEdowSrBCWu7-hgtil4T3jB2is5y3lBaxFYskH6NPoyfPgM2cQq9TjPuvXOQIIxeGz_4ccYx4DfwDoKBtMZ93GofMnYxYTcNw4xDDIMPoBOGYfC70VsM-0mPPoZ8jk6cHjJc_N4ler-_-1g9kueXh6fV7TOxgsmRGGtqKbmkTnZAq66H1gjdCqdrw2Stmeamtk1jeslt1UsrtOXagey6ilGxRFeH1l2K-wnyqDZxSqEMKt5yUbOad01x8YPLpphzAqd2yW_Lz4pR9Q1SHUCqAlL9gFRzCYlDKBdzWEP6q_4n9QWZQnk3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723515286</pqid></control><display><type>article</type><title>Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations</title><source>SpringerLink Journals</source><creator>Wu, Duan ; Niu, Pengcheng</creator><creatorcontrib>Wu, Duan ; Niu, Pengcheng</creatorcontrib><description>In this paper, we establish the pointwise boundary differentiability on Reifenberg domains for viscosity solutions of fully nonlinear elliptic equations which extends the result under the usual
C
1
,
Dini
condition and generalizes the result for linear equations in Huang et al (Manuscr. Math 162(3–4):305–313, 2020). Moreover, our proofs are relatively simple.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-021-01346-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Domains ; Elliptic functions ; Geometry ; Lie Groups ; Linear equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Number Theory ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2022-11, Vol.169 (3-4), p.549-563</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bcb599290f98e048de7b3a73fa5b195a1a2b5c66bd92c4d9c3ac2afe9884103</citedby><cites>FETCH-LOGICAL-c319t-bcb599290f98e048de7b3a73fa5b195a1a2b5c66bd92c4d9c3ac2afe9884103</cites><orcidid>0000-0002-5480-3525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-021-01346-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-021-01346-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Duan</creatorcontrib><creatorcontrib>Niu, Pengcheng</creatorcontrib><title>Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>In this paper, we establish the pointwise boundary differentiability on Reifenberg domains for viscosity solutions of fully nonlinear elliptic equations which extends the result under the usual
C
1
,
Dini
condition and generalizes the result for linear equations in Huang et al (Manuscr. Math 162(3–4):305–313, 2020). Moreover, our proofs are relatively simple.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Domains</subject><subject>Elliptic functions</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOprL3LKU4g0ERd2HJHNSUqZJm8wg8_ZGK7hzdRb_jfMhdMnoNaO0vcmUci4J5YxQJqqGzEdowSrBCWu7-hgtil4T3jB2is5y3lBaxFYskH6NPoyfPgM2cQq9TjPuvXOQIIxeGz_4ccYx4DfwDoKBtMZ93GofMnYxYTcNw4xDDIMPoBOGYfC70VsM-0mPPoZ8jk6cHjJc_N4ler-_-1g9kueXh6fV7TOxgsmRGGtqKbmkTnZAq66H1gjdCqdrw2Stmeamtk1jeslt1UsrtOXagey6ilGxRFeH1l2K-wnyqDZxSqEMKt5yUbOad01x8YPLpphzAqd2yW_Lz4pR9Q1SHUCqAlL9gFRzCYlDKBdzWEP6q_4n9QWZQnk3</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Wu, Duan</creator><creator>Niu, Pengcheng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5480-3525</orcidid></search><sort><creationdate>20221101</creationdate><title>Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations</title><author>Wu, Duan ; Niu, Pengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bcb599290f98e048de7b3a73fa5b195a1a2b5c66bd92c4d9c3ac2afe9884103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Domains</topic><topic>Elliptic functions</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Duan</creatorcontrib><creatorcontrib>Niu, Pengcheng</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Duan</au><au>Niu, Pengcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>169</volume><issue>3-4</issue><spage>549</spage><epage>563</epage><pages>549-563</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>In this paper, we establish the pointwise boundary differentiability on Reifenberg domains for viscosity solutions of fully nonlinear elliptic equations which extends the result under the usual
C
1
,
Dini
condition and generalizes the result for linear equations in Huang et al (Manuscr. Math 162(3–4):305–313, 2020). Moreover, our proofs are relatively simple.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-021-01346-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5480-3525</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-2611 |
ispartof | Manuscripta mathematica, 2022-11, Vol.169 (3-4), p.549-563 |
issn | 0025-2611 1432-1785 |
language | eng |
recordid | cdi_proquest_journals_2723515286 |
source | SpringerLink Journals |
subjects | Algebraic Geometry Calculus of Variations and Optimal Control Optimization Domains Elliptic functions Geometry Lie Groups Linear equations Mathematical analysis Mathematics Mathematics and Statistics Number Theory Topological Groups |
title | Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pointwise%20boundary%20differentiability%20on%20Reifenberg%20domains%20for%20fully%20nonlinear%20elliptic%20equations&rft.jtitle=Manuscripta%20mathematica&rft.au=Wu,%20Duan&rft.date=2022-11-01&rft.volume=169&rft.issue=3-4&rft.spage=549&rft.epage=563&rft.pages=549-563&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-021-01346-y&rft_dat=%3Cproquest_cross%3E2723515286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723515286&rft_id=info:pmid/&rfr_iscdi=true |