Quantitative subspace theorem and general form of second main theorem for higher degree polynomials

This paper deals with the quantitative Schmidt’s subspace theorem and the general from of the second main theorem, which are two correspondence objects in Diophantine approximation theory and Nevanlinna theory. In this paper, we give a new below bound for Chow weight of projective varieties defined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2022-11, Vol.169 (3-4), p.519-547
1. Verfasser: Si, Duc Quang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue 3-4
container_start_page 519
container_title Manuscripta mathematica
container_volume 169
creator Si, Duc Quang
description This paper deals with the quantitative Schmidt’s subspace theorem and the general from of the second main theorem, which are two correspondence objects in Diophantine approximation theory and Nevanlinna theory. In this paper, we give a new below bound for Chow weight of projective varieties defined over a number field. Then, we apply it to prove a quantitative version of Schmidt’s subspace theorem for polynomials of higher degree in subgeneral position with respect to a projective variety. Finally, we apply this new below bound for Chow weight to establish a general form of second main theorem in Nevanlinna theory for meromorphic mappings into projective varieties intersecting hypersurfaces in subgeneral position with a short proof. Our results improve and generalize the previous results in these directions.
doi_str_mv 10.1007/s00229-021-01329-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723515211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723515211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8bf82512fc944c9b72ec1432906e75e7553a2957f5108e52012b1944fa6ed4c43</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9VM0mzaoyz-gwUR9BzS7KTbZdvUpBXWT2_Wit6EgRnyfm-GPEIugV0DY-omMsZ5mTEOGQORps8jMoNc8AxUIY_JLOky4wuAU3IW45axJCoxI_ZlNN3QDGZoPpDGsYq9sUiHDfqALTXdmtbYYTA76nxoqXc0ovXpuTVN98sljW6aeoOBrrEOiLT3u33n28bs4jk5canhxU-fk7f7u9flY7Z6fnha3q4yK6AcsqJyBZfAnS3z3JaV4mgPXyjZApVMJYXhpVROAitQcga8goQ6s8B1bnMxJ1fT3j749xHjoLd-DF06qbniQoLkAIniE2WDjzGg031oWhP2Gpg-hKmnMHUKU3-HqT-TSUymmOCuxvC3-h_XF5rneCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723515211</pqid></control><display><type>article</type><title>Quantitative subspace theorem and general form of second main theorem for higher degree polynomials</title><source>SpringerNature Complete Journals</source><creator>Si, Duc Quang</creator><creatorcontrib>Si, Duc Quang</creatorcontrib><description>This paper deals with the quantitative Schmidt’s subspace theorem and the general from of the second main theorem, which are two correspondence objects in Diophantine approximation theory and Nevanlinna theory. In this paper, we give a new below bound for Chow weight of projective varieties defined over a number field. Then, we apply it to prove a quantitative version of Schmidt’s subspace theorem for polynomials of higher degree in subgeneral position with respect to a projective variety. Finally, we apply this new below bound for Chow weight to establish a general form of second main theorem in Nevanlinna theory for meromorphic mappings into projective varieties intersecting hypersurfaces in subgeneral position with a short proof. Our results improve and generalize the previous results in these directions.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-021-01329-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Hyperspaces ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Polynomials ; Subspaces ; Theorems ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2022-11, Vol.169 (3-4), p.519-547</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8bf82512fc944c9b72ec1432906e75e7553a2957f5108e52012b1944fa6ed4c43</citedby><cites>FETCH-LOGICAL-c319t-8bf82512fc944c9b72ec1432906e75e7553a2957f5108e52012b1944fa6ed4c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-021-01329-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-021-01329-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Si, Duc Quang</creatorcontrib><title>Quantitative subspace theorem and general form of second main theorem for higher degree polynomials</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>This paper deals with the quantitative Schmidt’s subspace theorem and the general from of the second main theorem, which are two correspondence objects in Diophantine approximation theory and Nevanlinna theory. In this paper, we give a new below bound for Chow weight of projective varieties defined over a number field. Then, we apply it to prove a quantitative version of Schmidt’s subspace theorem for polynomials of higher degree in subgeneral position with respect to a projective variety. Finally, we apply this new below bound for Chow weight to establish a general form of second main theorem in Nevanlinna theory for meromorphic mappings into projective varieties intersecting hypersurfaces in subgeneral position with a short proof. Our results improve and generalize the previous results in these directions.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Hyperspaces</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Polynomials</subject><subject>Subspaces</subject><subject>Theorems</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9VM0mzaoyz-gwUR9BzS7KTbZdvUpBXWT2_Wit6EgRnyfm-GPEIugV0DY-omMsZ5mTEOGQORps8jMoNc8AxUIY_JLOky4wuAU3IW45axJCoxI_ZlNN3QDGZoPpDGsYq9sUiHDfqALTXdmtbYYTA76nxoqXc0ovXpuTVN98sljW6aeoOBrrEOiLT3u33n28bs4jk5canhxU-fk7f7u9flY7Z6fnha3q4yK6AcsqJyBZfAnS3z3JaV4mgPXyjZApVMJYXhpVROAitQcga8goQ6s8B1bnMxJ1fT3j749xHjoLd-DF06qbniQoLkAIniE2WDjzGg031oWhP2Gpg-hKmnMHUKU3-HqT-TSUymmOCuxvC3-h_XF5rneCs</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Si, Duc Quang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>Quantitative subspace theorem and general form of second main theorem for higher degree polynomials</title><author>Si, Duc Quang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8bf82512fc944c9b72ec1432906e75e7553a2957f5108e52012b1944fa6ed4c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Hyperspaces</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Polynomials</topic><topic>Subspaces</topic><topic>Theorems</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Si, Duc Quang</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Si, Duc Quang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative subspace theorem and general form of second main theorem for higher degree polynomials</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>169</volume><issue>3-4</issue><spage>519</spage><epage>547</epage><pages>519-547</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>This paper deals with the quantitative Schmidt’s subspace theorem and the general from of the second main theorem, which are two correspondence objects in Diophantine approximation theory and Nevanlinna theory. In this paper, we give a new below bound for Chow weight of projective varieties defined over a number field. Then, we apply it to prove a quantitative version of Schmidt’s subspace theorem for polynomials of higher degree in subgeneral position with respect to a projective variety. Finally, we apply this new below bound for Chow weight to establish a general form of second main theorem in Nevanlinna theory for meromorphic mappings into projective varieties intersecting hypersurfaces in subgeneral position with a short proof. Our results improve and generalize the previous results in these directions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-021-01329-z</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2022-11, Vol.169 (3-4), p.519-547
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_2723515211
source SpringerNature Complete Journals
subjects Algebraic Geometry
Calculus of Variations and Optimal Control
Optimization
Geometry
Hyperspaces
Lie Groups
Mathematics
Mathematics and Statistics
Number Theory
Polynomials
Subspaces
Theorems
Topological Groups
title Quantitative subspace theorem and general form of second main theorem for higher degree polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20subspace%20theorem%20and%20general%20form%20of%20second%20main%20theorem%20for%20higher%20degree%20polynomials&rft.jtitle=Manuscripta%20mathematica&rft.au=Si,%20Duc%20Quang&rft.date=2022-11-01&rft.volume=169&rft.issue=3-4&rft.spage=519&rft.epage=547&rft.pages=519-547&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-021-01329-z&rft_dat=%3Cproquest_cross%3E2723515211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723515211&rft_id=info:pmid/&rfr_iscdi=true