Quantitative subspace theorem and general form of second main theorem for higher degree polynomials
This paper deals with the quantitative Schmidt’s subspace theorem and the general from of the second main theorem, which are two correspondence objects in Diophantine approximation theory and Nevanlinna theory. In this paper, we give a new below bound for Chow weight of projective varieties defined...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2022-11, Vol.169 (3-4), p.519-547 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 547 |
---|---|
container_issue | 3-4 |
container_start_page | 519 |
container_title | Manuscripta mathematica |
container_volume | 169 |
creator | Si, Duc Quang |
description | This paper deals with the quantitative Schmidt’s subspace theorem and the general from of the second main theorem, which are two correspondence objects in Diophantine approximation theory and Nevanlinna theory. In this paper, we give a new below bound for Chow weight of projective varieties defined over a number field. Then, we apply it to prove a quantitative version of Schmidt’s subspace theorem for polynomials of higher degree in subgeneral position with respect to a projective variety. Finally, we apply this new below bound for Chow weight to establish a general form of second main theorem in Nevanlinna theory for meromorphic mappings into projective varieties intersecting hypersurfaces in subgeneral position with a short proof. Our results improve and generalize the previous results in these directions. |
doi_str_mv | 10.1007/s00229-021-01329-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723515211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723515211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8bf82512fc944c9b72ec1432906e75e7553a2957f5108e52012b1944fa6ed4c43</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9VM0mzaoyz-gwUR9BzS7KTbZdvUpBXWT2_Wit6EgRnyfm-GPEIugV0DY-omMsZ5mTEOGQORps8jMoNc8AxUIY_JLOky4wuAU3IW45axJCoxI_ZlNN3QDGZoPpDGsYq9sUiHDfqALTXdmtbYYTA76nxoqXc0ovXpuTVN98sljW6aeoOBrrEOiLT3u33n28bs4jk5canhxU-fk7f7u9flY7Z6fnha3q4yK6AcsqJyBZfAnS3z3JaV4mgPXyjZApVMJYXhpVROAitQcga8goQ6s8B1bnMxJ1fT3j749xHjoLd-DF06qbniQoLkAIniE2WDjzGg031oWhP2Gpg-hKmnMHUKU3-HqT-TSUymmOCuxvC3-h_XF5rneCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723515211</pqid></control><display><type>article</type><title>Quantitative subspace theorem and general form of second main theorem for higher degree polynomials</title><source>SpringerNature Complete Journals</source><creator>Si, Duc Quang</creator><creatorcontrib>Si, Duc Quang</creatorcontrib><description>This paper deals with the quantitative Schmidt’s subspace theorem and the general from of the second main theorem, which are two correspondence objects in Diophantine approximation theory and Nevanlinna theory. In this paper, we give a new below bound for Chow weight of projective varieties defined over a number field. Then, we apply it to prove a quantitative version of Schmidt’s subspace theorem for polynomials of higher degree in subgeneral position with respect to a projective variety. Finally, we apply this new below bound for Chow weight to establish a general form of second main theorem in Nevanlinna theory for meromorphic mappings into projective varieties intersecting hypersurfaces in subgeneral position with a short proof. Our results improve and generalize the previous results in these directions.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-021-01329-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Hyperspaces ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Polynomials ; Subspaces ; Theorems ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2022-11, Vol.169 (3-4), p.519-547</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8bf82512fc944c9b72ec1432906e75e7553a2957f5108e52012b1944fa6ed4c43</citedby><cites>FETCH-LOGICAL-c319t-8bf82512fc944c9b72ec1432906e75e7553a2957f5108e52012b1944fa6ed4c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-021-01329-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-021-01329-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Si, Duc Quang</creatorcontrib><title>Quantitative subspace theorem and general form of second main theorem for higher degree polynomials</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>This paper deals with the quantitative Schmidt’s subspace theorem and the general from of the second main theorem, which are two correspondence objects in Diophantine approximation theory and Nevanlinna theory. In this paper, we give a new below bound for Chow weight of projective varieties defined over a number field. Then, we apply it to prove a quantitative version of Schmidt’s subspace theorem for polynomials of higher degree in subgeneral position with respect to a projective variety. Finally, we apply this new below bound for Chow weight to establish a general form of second main theorem in Nevanlinna theory for meromorphic mappings into projective varieties intersecting hypersurfaces in subgeneral position with a short proof. Our results improve and generalize the previous results in these directions.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Hyperspaces</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Polynomials</subject><subject>Subspaces</subject><subject>Theorems</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9VM0mzaoyz-gwUR9BzS7KTbZdvUpBXWT2_Wit6EgRnyfm-GPEIugV0DY-omMsZ5mTEOGQORps8jMoNc8AxUIY_JLOky4wuAU3IW45axJCoxI_ZlNN3QDGZoPpDGsYq9sUiHDfqALTXdmtbYYTA76nxoqXc0ovXpuTVN98sljW6aeoOBrrEOiLT3u33n28bs4jk5canhxU-fk7f7u9flY7Z6fnha3q4yK6AcsqJyBZfAnS3z3JaV4mgPXyjZApVMJYXhpVROAitQcga8goQ6s8B1bnMxJ1fT3j749xHjoLd-DF06qbniQoLkAIniE2WDjzGg031oWhP2Gpg-hKmnMHUKU3-HqT-TSUymmOCuxvC3-h_XF5rneCs</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Si, Duc Quang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>Quantitative subspace theorem and general form of second main theorem for higher degree polynomials</title><author>Si, Duc Quang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8bf82512fc944c9b72ec1432906e75e7553a2957f5108e52012b1944fa6ed4c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Hyperspaces</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Polynomials</topic><topic>Subspaces</topic><topic>Theorems</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Si, Duc Quang</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Si, Duc Quang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative subspace theorem and general form of second main theorem for higher degree polynomials</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>169</volume><issue>3-4</issue><spage>519</spage><epage>547</epage><pages>519-547</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>This paper deals with the quantitative Schmidt’s subspace theorem and the general from of the second main theorem, which are two correspondence objects in Diophantine approximation theory and Nevanlinna theory. In this paper, we give a new below bound for Chow weight of projective varieties defined over a number field. Then, we apply it to prove a quantitative version of Schmidt’s subspace theorem for polynomials of higher degree in subgeneral position with respect to a projective variety. Finally, we apply this new below bound for Chow weight to establish a general form of second main theorem in Nevanlinna theory for meromorphic mappings into projective varieties intersecting hypersurfaces in subgeneral position with a short proof. Our results improve and generalize the previous results in these directions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-021-01329-z</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-2611 |
ispartof | Manuscripta mathematica, 2022-11, Vol.169 (3-4), p.519-547 |
issn | 0025-2611 1432-1785 |
language | eng |
recordid | cdi_proquest_journals_2723515211 |
source | SpringerNature Complete Journals |
subjects | Algebraic Geometry Calculus of Variations and Optimal Control Optimization Geometry Hyperspaces Lie Groups Mathematics Mathematics and Statistics Number Theory Polynomials Subspaces Theorems Topological Groups |
title | Quantitative subspace theorem and general form of second main theorem for higher degree polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20subspace%20theorem%20and%20general%20form%20of%20second%20main%20theorem%20for%20higher%20degree%20polynomials&rft.jtitle=Manuscripta%20mathematica&rft.au=Si,%20Duc%20Quang&rft.date=2022-11-01&rft.volume=169&rft.issue=3-4&rft.spage=519&rft.epage=547&rft.pages=519-547&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-021-01329-z&rft_dat=%3Cproquest_cross%3E2723515211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723515211&rft_id=info:pmid/&rfr_iscdi=true |