Two-dimensional metallic VTe2 demonstrating fast ion diffusion for aqueous zinc-ion batteries
Aqueous zinc ion batteries (AZIBs) have gained considerable attention due to the high demand for safety and eco-friendliness. However, the lack of reliable cathode materials is the main challenge in boosting the performance of the batteries. In response to these challenges, for the first time, this...
Gespeichert in:
Veröffentlicht in: | Sustainable energy & fuels 2022-10, Vol.6 (20), p.4626-4635 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4635 |
---|---|
container_issue | 20 |
container_start_page | 4626 |
container_title | Sustainable energy & fuels |
container_volume | 6 |
creator | Huang, Tzu-Chun Kuan-Wen, Cheng Che-An, Lin Yu-Chieh Fu Shih-Kang, Lin Yu-Ze, Chen |
description | Aqueous zinc ion batteries (AZIBs) have gained considerable attention due to the high demand for safety and eco-friendliness. However, the lack of reliable cathode materials is the main challenge in boosting the performance of the batteries. In response to these challenges, for the first time, this work reports the synthesis of VTe2 by a facile hydrothermal approach. The morphology of VTe2 can be customized by tuning the adequate pH value from nanorods synthesized in an acidic solution (pH = 4) to nanosheets synthesized in an alkaline solution (pH = 10). Impressively, as a potential cathode material for AZIBs, nanosheet VTe2 AZIBs deliver a high specific capacity of 200 mA h g−1 (at 0.2 A g−1) and a remarkable cycling duration of up to 400 cycles (at 1 A g−1), which is attributed to the layer structure and fast Zn2+ diffusion coefficient (DZn2+ ≈ 8 × 10−8 cm−2 s−1). Through the DFT calculation, the energy-preferable path of Zn2+ ions migrating in VTe2 is determined due to the low hopping energy barrier of 0.55 eV. Overall, for the first time, this work has proposed a reliable method to synthesize VTe2 and has taken a promising step in the design of electrodes for AZIBs and even for other metal-ion batteries. |
doi_str_mv | 10.1039/d2se00964a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2723514390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723514390</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-98e572a3b5af4f3f213009d7dee7078b1138e9825c4c63de3cdcca7291efc87e3</originalsourceid><addsrcrecordid>eNotj01LAzEYhIMgWGov_oKA52jyJtskRyl-QcHL6k1KNnkjKdtN3WQR_PVusaeBYWZ4hpAbwe8El_Y-QEHO7Vq5C7IAaQ1TlsMVWZWy55yDAAWNXpDP9iezkA44lJQH19MDVtf3ydOPFoEGPOSh1NHVNHzR6Eqlc4yGFON0KtCYR-q-J8xTob9p8Oxkdq5WHBOWa3IZXV9wddYleX96bDcvbPv2_Lp52LKjELIya7DR4GTXuKiijCDkzB50QNRcm24OGbQGGq_8WgaUPnjvNFiB0RuNcklu_3ePY55hSt3t8zTOd8oONMhGKGm5_APgQFUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723514390</pqid></control><display><type>article</type><title>Two-dimensional metallic VTe2 demonstrating fast ion diffusion for aqueous zinc-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Huang, Tzu-Chun ; Kuan-Wen, Cheng ; Che-An, Lin ; Yu-Chieh Fu ; Shih-Kang, Lin ; Yu-Ze, Chen</creator><creatorcontrib>Huang, Tzu-Chun ; Kuan-Wen, Cheng ; Che-An, Lin ; Yu-Chieh Fu ; Shih-Kang, Lin ; Yu-Ze, Chen</creatorcontrib><description>Aqueous zinc ion batteries (AZIBs) have gained considerable attention due to the high demand for safety and eco-friendliness. However, the lack of reliable cathode materials is the main challenge in boosting the performance of the batteries. In response to these challenges, for the first time, this work reports the synthesis of VTe2 by a facile hydrothermal approach. The morphology of VTe2 can be customized by tuning the adequate pH value from nanorods synthesized in an acidic solution (pH = 4) to nanosheets synthesized in an alkaline solution (pH = 10). Impressively, as a potential cathode material for AZIBs, nanosheet VTe2 AZIBs deliver a high specific capacity of 200 mA h g−1 (at 0.2 A g−1) and a remarkable cycling duration of up to 400 cycles (at 1 A g−1), which is attributed to the layer structure and fast Zn2+ diffusion coefficient (DZn2+ ≈ 8 × 10−8 cm−2 s−1). Through the DFT calculation, the energy-preferable path of Zn2+ ions migrating in VTe2 is determined due to the low hopping energy barrier of 0.55 eV. Overall, for the first time, this work has proposed a reliable method to synthesize VTe2 and has taken a promising step in the design of electrodes for AZIBs and even for other metal-ion batteries.</description><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/d2se00964a</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Cathodes ; Diffusion coefficient ; Diffusion layers ; Diffusion rate ; Electrode materials ; Ion diffusion ; Metal ions ; Nanorods ; Nanosheets ; pH effects ; Rechargeable batteries ; Specific capacity ; Synthesis ; Zinc</subject><ispartof>Sustainable energy & fuels, 2022-10, Vol.6 (20), p.4626-4635</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Tzu-Chun</creatorcontrib><creatorcontrib>Kuan-Wen, Cheng</creatorcontrib><creatorcontrib>Che-An, Lin</creatorcontrib><creatorcontrib>Yu-Chieh Fu</creatorcontrib><creatorcontrib>Shih-Kang, Lin</creatorcontrib><creatorcontrib>Yu-Ze, Chen</creatorcontrib><title>Two-dimensional metallic VTe2 demonstrating fast ion diffusion for aqueous zinc-ion batteries</title><title>Sustainable energy & fuels</title><description>Aqueous zinc ion batteries (AZIBs) have gained considerable attention due to the high demand for safety and eco-friendliness. However, the lack of reliable cathode materials is the main challenge in boosting the performance of the batteries. In response to these challenges, for the first time, this work reports the synthesis of VTe2 by a facile hydrothermal approach. The morphology of VTe2 can be customized by tuning the adequate pH value from nanorods synthesized in an acidic solution (pH = 4) to nanosheets synthesized in an alkaline solution (pH = 10). Impressively, as a potential cathode material for AZIBs, nanosheet VTe2 AZIBs deliver a high specific capacity of 200 mA h g−1 (at 0.2 A g−1) and a remarkable cycling duration of up to 400 cycles (at 1 A g−1), which is attributed to the layer structure and fast Zn2+ diffusion coefficient (DZn2+ ≈ 8 × 10−8 cm−2 s−1). Through the DFT calculation, the energy-preferable path of Zn2+ ions migrating in VTe2 is determined due to the low hopping energy barrier of 0.55 eV. Overall, for the first time, this work has proposed a reliable method to synthesize VTe2 and has taken a promising step in the design of electrodes for AZIBs and even for other metal-ion batteries.</description><subject>Cathodes</subject><subject>Diffusion coefficient</subject><subject>Diffusion layers</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>Ion diffusion</subject><subject>Metal ions</subject><subject>Nanorods</subject><subject>Nanosheets</subject><subject>pH effects</subject><subject>Rechargeable batteries</subject><subject>Specific capacity</subject><subject>Synthesis</subject><subject>Zinc</subject><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotj01LAzEYhIMgWGov_oKA52jyJtskRyl-QcHL6k1KNnkjKdtN3WQR_PVusaeBYWZ4hpAbwe8El_Y-QEHO7Vq5C7IAaQ1TlsMVWZWy55yDAAWNXpDP9iezkA44lJQH19MDVtf3ydOPFoEGPOSh1NHVNHzR6Eqlc4yGFON0KtCYR-q-J8xTob9p8Oxkdq5WHBOWa3IZXV9wddYleX96bDcvbPv2_Lp52LKjELIya7DR4GTXuKiijCDkzB50QNRcm24OGbQGGq_8WgaUPnjvNFiB0RuNcklu_3ePY55hSt3t8zTOd8oONMhGKGm5_APgQFUU</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>Huang, Tzu-Chun</creator><creator>Kuan-Wen, Cheng</creator><creator>Che-An, Lin</creator><creator>Yu-Chieh Fu</creator><creator>Shih-Kang, Lin</creator><creator>Yu-Ze, Chen</creator><general>Royal Society of Chemistry</general><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20221011</creationdate><title>Two-dimensional metallic VTe2 demonstrating fast ion diffusion for aqueous zinc-ion batteries</title><author>Huang, Tzu-Chun ; Kuan-Wen, Cheng ; Che-An, Lin ; Yu-Chieh Fu ; Shih-Kang, Lin ; Yu-Ze, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-98e572a3b5af4f3f213009d7dee7078b1138e9825c4c63de3cdcca7291efc87e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Diffusion coefficient</topic><topic>Diffusion layers</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>Ion diffusion</topic><topic>Metal ions</topic><topic>Nanorods</topic><topic>Nanosheets</topic><topic>pH effects</topic><topic>Rechargeable batteries</topic><topic>Specific capacity</topic><topic>Synthesis</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Tzu-Chun</creatorcontrib><creatorcontrib>Kuan-Wen, Cheng</creatorcontrib><creatorcontrib>Che-An, Lin</creatorcontrib><creatorcontrib>Yu-Chieh Fu</creatorcontrib><creatorcontrib>Shih-Kang, Lin</creatorcontrib><creatorcontrib>Yu-Ze, Chen</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Tzu-Chun</au><au>Kuan-Wen, Cheng</au><au>Che-An, Lin</au><au>Yu-Chieh Fu</au><au>Shih-Kang, Lin</au><au>Yu-Ze, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional metallic VTe2 demonstrating fast ion diffusion for aqueous zinc-ion batteries</atitle><jtitle>Sustainable energy & fuels</jtitle><date>2022-10-11</date><risdate>2022</risdate><volume>6</volume><issue>20</issue><spage>4626</spage><epage>4635</epage><pages>4626-4635</pages><eissn>2398-4902</eissn><abstract>Aqueous zinc ion batteries (AZIBs) have gained considerable attention due to the high demand for safety and eco-friendliness. However, the lack of reliable cathode materials is the main challenge in boosting the performance of the batteries. In response to these challenges, for the first time, this work reports the synthesis of VTe2 by a facile hydrothermal approach. The morphology of VTe2 can be customized by tuning the adequate pH value from nanorods synthesized in an acidic solution (pH = 4) to nanosheets synthesized in an alkaline solution (pH = 10). Impressively, as a potential cathode material for AZIBs, nanosheet VTe2 AZIBs deliver a high specific capacity of 200 mA h g−1 (at 0.2 A g−1) and a remarkable cycling duration of up to 400 cycles (at 1 A g−1), which is attributed to the layer structure and fast Zn2+ diffusion coefficient (DZn2+ ≈ 8 × 10−8 cm−2 s−1). Through the DFT calculation, the energy-preferable path of Zn2+ ions migrating in VTe2 is determined due to the low hopping energy barrier of 0.55 eV. Overall, for the first time, this work has proposed a reliable method to synthesize VTe2 and has taken a promising step in the design of electrodes for AZIBs and even for other metal-ion batteries.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2se00964a</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2398-4902 |
ispartof | Sustainable energy & fuels, 2022-10, Vol.6 (20), p.4626-4635 |
issn | 2398-4902 |
language | eng |
recordid | cdi_proquest_journals_2723514390 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Cathodes Diffusion coefficient Diffusion layers Diffusion rate Electrode materials Ion diffusion Metal ions Nanorods Nanosheets pH effects Rechargeable batteries Specific capacity Synthesis Zinc |
title | Two-dimensional metallic VTe2 demonstrating fast ion diffusion for aqueous zinc-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20metallic%20VTe2%20demonstrating%20fast%20ion%20diffusion%20for%20aqueous%20zinc-ion%20batteries&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Huang,%20Tzu-Chun&rft.date=2022-10-11&rft.volume=6&rft.issue=20&rft.spage=4626&rft.epage=4635&rft.pages=4626-4635&rft.eissn=2398-4902&rft_id=info:doi/10.1039/d2se00964a&rft_dat=%3Cproquest%3E2723514390%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723514390&rft_id=info:pmid/&rfr_iscdi=true |