SVIn2: A multi-sensor fusion-based underwater SLAM system

This paper presents SVIn2, a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system, which fuses Scanning Profiling Sonar, Visual, Inertial, and water-pressure information in a non-linear optimization framework for small and large scale challenging underwater enviro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2022-09, Vol.41 (11-12), p.1022-1042
Hauptverfasser: Rahman, Sharmin, Quattrini Li, Alberto, Rekleitis, Ioannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1042
container_issue 11-12
container_start_page 1022
container_title The International journal of robotics research
container_volume 41
creator Rahman, Sharmin
Quattrini Li, Alberto
Rekleitis, Ioannis
description This paper presents SVIn2, a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system, which fuses Scanning Profiling Sonar, Visual, Inertial, and water-pressure information in a non-linear optimization framework for small and large scale challenging underwater environments. The developed real-time system features robust initialization, loop-closing, and relocalization capabilities, which make the system reliable in the presence of haze, blurriness, low light, and lighting variations, typically observed in underwater scenarios. Over the last decade, Visual-Inertial Odometry and SLAM systems have shown excellent performance for mobile robots in indoor and outdoor environments, but often fail underwater due to the inherent difficulties in such environments. Our approach combats the weaknesses of previous approaches by utilizing additional sensors and exploiting their complementary characteristics. In particular, we use (1) acoustic range information for improved reconstruction and localization, thanks to the reliable distance measurement; (2) depth information from water-pressure sensor for robust initialization, refining the scale, and assisting to limit the drift in the tightly-coupled integration. The developed software—made open source—has been successfully used to test and validate the proposed system in both benchmark datasets and numerous real world underwater scenarios, including datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle Aqua2. SVIn2 demonstrated outstanding performance in terms of accuracy and robustness on those datasets and enabled other robotic tasks, for example, planning for underwater robots in presence of obstacles.
doi_str_mv 10.1177/02783649221110259
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723387438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_02783649221110259</sage_id><sourcerecordid>2723387438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-65d82d18f3ca1af9decbe53c89e7d8b904c4b056dbf03d65370bdc5b25d3c0333</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFZ_gLuA66lz52YyM-5K8VGouKi6DfOKtLRJnUmQ_nsTIrgQV3dxvu9cOIRcA5sBSHnLuFRY5JpzAGBc6BMyAZkDRZDFKZkMOR2Ac3KR0pYxhgXTE6LX78ua32XzbN_t2g1NoU5NzKoubZqaWpOCz7rah_hl2hCz9Wr-nKVjasP-kpxVZpfC1c-dkreH-9fFE129PC4X8xV1CLylhfCKe1AVOgOm0j44GwQ6pYP0ymqWu9wyUXhbMfSFQMmsd8Jy4dExRJySm7H3EJvPLqS23DZdrPuXJZccUckcVU_BSLnYpBRDVR7iZm_isQRWDguVfxbqndnoJPMRflv_F74BohNkNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723387438</pqid></control><display><type>article</type><title>SVIn2: A multi-sensor fusion-based underwater SLAM system</title><source>SAGE Complete A-Z List</source><creator>Rahman, Sharmin ; Quattrini Li, Alberto ; Rekleitis, Ioannis</creator><creatorcontrib>Rahman, Sharmin ; Quattrini Li, Alberto ; Rekleitis, Ioannis</creatorcontrib><description>This paper presents SVIn2, a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system, which fuses Scanning Profiling Sonar, Visual, Inertial, and water-pressure information in a non-linear optimization framework for small and large scale challenging underwater environments. The developed real-time system features robust initialization, loop-closing, and relocalization capabilities, which make the system reliable in the presence of haze, blurriness, low light, and lighting variations, typically observed in underwater scenarios. Over the last decade, Visual-Inertial Odometry and SLAM systems have shown excellent performance for mobile robots in indoor and outdoor environments, but often fail underwater due to the inherent difficulties in such environments. Our approach combats the weaknesses of previous approaches by utilizing additional sensors and exploiting their complementary characteristics. In particular, we use (1) acoustic range information for improved reconstruction and localization, thanks to the reliable distance measurement; (2) depth information from water-pressure sensor for robust initialization, refining the scale, and assisting to limit the drift in the tightly-coupled integration. The developed software—made open source—has been successfully used to test and validate the proposed system in both benchmark datasets and numerous real world underwater scenarios, including datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle Aqua2. SVIn2 demonstrated outstanding performance in terms of accuracy and robustness on those datasets and enabled other robotic tasks, for example, planning for underwater robots in presence of obstacles.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/02783649221110259</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Autonomous underwater vehicles ; Datasets ; Distance measurement ; Haze ; Indoor environments ; Localization ; Multisensor fusion ; Odometers ; Optimization ; Pressure sensors ; Robustness ; Sensors ; Simultaneous localization and mapping ; Underwater detectors ; Underwater robots ; Visual observation</subject><ispartof>The International journal of robotics research, 2022-09, Vol.41 (11-12), p.1022-1042</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-65d82d18f3ca1af9decbe53c89e7d8b904c4b056dbf03d65370bdc5b25d3c0333</citedby><cites>FETCH-LOGICAL-c312t-65d82d18f3ca1af9decbe53c89e7d8b904c4b056dbf03d65370bdc5b25d3c0333</cites><orcidid>0000-0002-4094-9793 ; 0000-0002-4343-9561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/02783649221110259$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/02783649221110259$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Rahman, Sharmin</creatorcontrib><creatorcontrib>Quattrini Li, Alberto</creatorcontrib><creatorcontrib>Rekleitis, Ioannis</creatorcontrib><title>SVIn2: A multi-sensor fusion-based underwater SLAM system</title><title>The International journal of robotics research</title><description>This paper presents SVIn2, a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system, which fuses Scanning Profiling Sonar, Visual, Inertial, and water-pressure information in a non-linear optimization framework for small and large scale challenging underwater environments. The developed real-time system features robust initialization, loop-closing, and relocalization capabilities, which make the system reliable in the presence of haze, blurriness, low light, and lighting variations, typically observed in underwater scenarios. Over the last decade, Visual-Inertial Odometry and SLAM systems have shown excellent performance for mobile robots in indoor and outdoor environments, but often fail underwater due to the inherent difficulties in such environments. Our approach combats the weaknesses of previous approaches by utilizing additional sensors and exploiting their complementary characteristics. In particular, we use (1) acoustic range information for improved reconstruction and localization, thanks to the reliable distance measurement; (2) depth information from water-pressure sensor for robust initialization, refining the scale, and assisting to limit the drift in the tightly-coupled integration. The developed software—made open source—has been successfully used to test and validate the proposed system in both benchmark datasets and numerous real world underwater scenarios, including datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle Aqua2. SVIn2 demonstrated outstanding performance in terms of accuracy and robustness on those datasets and enabled other robotic tasks, for example, planning for underwater robots in presence of obstacles.</description><subject>Autonomous underwater vehicles</subject><subject>Datasets</subject><subject>Distance measurement</subject><subject>Haze</subject><subject>Indoor environments</subject><subject>Localization</subject><subject>Multisensor fusion</subject><subject>Odometers</subject><subject>Optimization</subject><subject>Pressure sensors</subject><subject>Robustness</subject><subject>Sensors</subject><subject>Simultaneous localization and mapping</subject><subject>Underwater detectors</subject><subject>Underwater robots</subject><subject>Visual observation</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFZ_gLuA66lz52YyM-5K8VGouKi6DfOKtLRJnUmQ_nsTIrgQV3dxvu9cOIRcA5sBSHnLuFRY5JpzAGBc6BMyAZkDRZDFKZkMOR2Ac3KR0pYxhgXTE6LX78ua32XzbN_t2g1NoU5NzKoubZqaWpOCz7rah_hl2hCz9Wr-nKVjasP-kpxVZpfC1c-dkreH-9fFE129PC4X8xV1CLylhfCKe1AVOgOm0j44GwQ6pYP0ymqWu9wyUXhbMfSFQMmsd8Jy4dExRJySm7H3EJvPLqS23DZdrPuXJZccUckcVU_BSLnYpBRDVR7iZm_isQRWDguVfxbqndnoJPMRflv_F74BohNkNQ</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Rahman, Sharmin</creator><creator>Quattrini Li, Alberto</creator><creator>Rekleitis, Ioannis</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4094-9793</orcidid><orcidid>https://orcid.org/0000-0002-4343-9561</orcidid></search><sort><creationdate>202209</creationdate><title>SVIn2: A multi-sensor fusion-based underwater SLAM system</title><author>Rahman, Sharmin ; Quattrini Li, Alberto ; Rekleitis, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-65d82d18f3ca1af9decbe53c89e7d8b904c4b056dbf03d65370bdc5b25d3c0333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autonomous underwater vehicles</topic><topic>Datasets</topic><topic>Distance measurement</topic><topic>Haze</topic><topic>Indoor environments</topic><topic>Localization</topic><topic>Multisensor fusion</topic><topic>Odometers</topic><topic>Optimization</topic><topic>Pressure sensors</topic><topic>Robustness</topic><topic>Sensors</topic><topic>Simultaneous localization and mapping</topic><topic>Underwater detectors</topic><topic>Underwater robots</topic><topic>Visual observation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Sharmin</creatorcontrib><creatorcontrib>Quattrini Li, Alberto</creatorcontrib><creatorcontrib>Rekleitis, Ioannis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Sharmin</au><au>Quattrini Li, Alberto</au><au>Rekleitis, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SVIn2: A multi-sensor fusion-based underwater SLAM system</atitle><jtitle>The International journal of robotics research</jtitle><date>2022-09</date><risdate>2022</risdate><volume>41</volume><issue>11-12</issue><spage>1022</spage><epage>1042</epage><pages>1022-1042</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>This paper presents SVIn2, a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system, which fuses Scanning Profiling Sonar, Visual, Inertial, and water-pressure information in a non-linear optimization framework for small and large scale challenging underwater environments. The developed real-time system features robust initialization, loop-closing, and relocalization capabilities, which make the system reliable in the presence of haze, blurriness, low light, and lighting variations, typically observed in underwater scenarios. Over the last decade, Visual-Inertial Odometry and SLAM systems have shown excellent performance for mobile robots in indoor and outdoor environments, but often fail underwater due to the inherent difficulties in such environments. Our approach combats the weaknesses of previous approaches by utilizing additional sensors and exploiting their complementary characteristics. In particular, we use (1) acoustic range information for improved reconstruction and localization, thanks to the reliable distance measurement; (2) depth information from water-pressure sensor for robust initialization, refining the scale, and assisting to limit the drift in the tightly-coupled integration. The developed software—made open source—has been successfully used to test and validate the proposed system in both benchmark datasets and numerous real world underwater scenarios, including datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle Aqua2. SVIn2 demonstrated outstanding performance in terms of accuracy and robustness on those datasets and enabled other robotic tasks, for example, planning for underwater robots in presence of obstacles.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/02783649221110259</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4094-9793</orcidid><orcidid>https://orcid.org/0000-0002-4343-9561</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2022-09, Vol.41 (11-12), p.1022-1042
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_journals_2723387438
source SAGE Complete A-Z List
subjects Autonomous underwater vehicles
Datasets
Distance measurement
Haze
Indoor environments
Localization
Multisensor fusion
Odometers
Optimization
Pressure sensors
Robustness
Sensors
Simultaneous localization and mapping
Underwater detectors
Underwater robots
Visual observation
title SVIn2: A multi-sensor fusion-based underwater SLAM system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SVIn2:%20A%20multi-sensor%20fusion-based%20underwater%20SLAM%20system&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Rahman,%20Sharmin&rft.date=2022-09&rft.volume=41&rft.issue=11-12&rft.spage=1022&rft.epage=1042&rft.pages=1022-1042&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/02783649221110259&rft_dat=%3Cproquest_cross%3E2723387438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723387438&rft_id=info:pmid/&rft_sage_id=10.1177_02783649221110259&rfr_iscdi=true