SVIn2: A multi-sensor fusion-based underwater SLAM system
This paper presents SVIn2, a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system, which fuses Scanning Profiling Sonar, Visual, Inertial, and water-pressure information in a non-linear optimization framework for small and large scale challenging underwater enviro...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2022-09, Vol.41 (11-12), p.1022-1042 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1042 |
---|---|
container_issue | 11-12 |
container_start_page | 1022 |
container_title | The International journal of robotics research |
container_volume | 41 |
creator | Rahman, Sharmin Quattrini Li, Alberto Rekleitis, Ioannis |
description | This paper presents SVIn2, a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system, which fuses Scanning Profiling Sonar, Visual, Inertial, and water-pressure information in a non-linear optimization framework for small and large scale challenging underwater environments. The developed real-time system features robust initialization, loop-closing, and relocalization capabilities, which make the system reliable in the presence of haze, blurriness, low light, and lighting variations, typically observed in underwater scenarios. Over the last decade, Visual-Inertial Odometry and SLAM systems have shown excellent performance for mobile robots in indoor and outdoor environments, but often fail underwater due to the inherent difficulties in such environments. Our approach combats the weaknesses of previous approaches by utilizing additional sensors and exploiting their complementary characteristics. In particular, we use (1) acoustic range information for improved reconstruction and localization, thanks to the reliable distance measurement; (2) depth information from water-pressure sensor for robust initialization, refining the scale, and assisting to limit the drift in the tightly-coupled integration. The developed software—made open source—has been successfully used to test and validate the proposed system in both benchmark datasets and numerous real world underwater scenarios, including datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle Aqua2. SVIn2 demonstrated outstanding performance in terms of accuracy and robustness on those datasets and enabled other robotic tasks, for example, planning for underwater robots in presence of obstacles. |
doi_str_mv | 10.1177/02783649221110259 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723387438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_02783649221110259</sage_id><sourcerecordid>2723387438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-65d82d18f3ca1af9decbe53c89e7d8b904c4b056dbf03d65370bdc5b25d3c0333</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFZ_gLuA66lz52YyM-5K8VGouKi6DfOKtLRJnUmQ_nsTIrgQV3dxvu9cOIRcA5sBSHnLuFRY5JpzAGBc6BMyAZkDRZDFKZkMOR2Ac3KR0pYxhgXTE6LX78ua32XzbN_t2g1NoU5NzKoubZqaWpOCz7rah_hl2hCz9Wr-nKVjasP-kpxVZpfC1c-dkreH-9fFE129PC4X8xV1CLylhfCKe1AVOgOm0j44GwQ6pYP0ymqWu9wyUXhbMfSFQMmsd8Jy4dExRJySm7H3EJvPLqS23DZdrPuXJZccUckcVU_BSLnYpBRDVR7iZm_isQRWDguVfxbqndnoJPMRflv_F74BohNkNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723387438</pqid></control><display><type>article</type><title>SVIn2: A multi-sensor fusion-based underwater SLAM system</title><source>SAGE Complete A-Z List</source><creator>Rahman, Sharmin ; Quattrini Li, Alberto ; Rekleitis, Ioannis</creator><creatorcontrib>Rahman, Sharmin ; Quattrini Li, Alberto ; Rekleitis, Ioannis</creatorcontrib><description>This paper presents SVIn2, a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system, which fuses Scanning Profiling Sonar, Visual, Inertial, and water-pressure information in a non-linear optimization framework for small and large scale challenging underwater environments. The developed real-time system features robust initialization, loop-closing, and relocalization capabilities, which make the system reliable in the presence of haze, blurriness, low light, and lighting variations, typically observed in underwater scenarios. Over the last decade, Visual-Inertial Odometry and SLAM systems have shown excellent performance for mobile robots in indoor and outdoor environments, but often fail underwater due to the inherent difficulties in such environments. Our approach combats the weaknesses of previous approaches by utilizing additional sensors and exploiting their complementary characteristics. In particular, we use (1) acoustic range information for improved reconstruction and localization, thanks to the reliable distance measurement; (2) depth information from water-pressure sensor for robust initialization, refining the scale, and assisting to limit the drift in the tightly-coupled integration. The developed software—made open source—has been successfully used to test and validate the proposed system in both benchmark datasets and numerous real world underwater scenarios, including datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle Aqua2. SVIn2 demonstrated outstanding performance in terms of accuracy and robustness on those datasets and enabled other robotic tasks, for example, planning for underwater robots in presence of obstacles.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/02783649221110259</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Autonomous underwater vehicles ; Datasets ; Distance measurement ; Haze ; Indoor environments ; Localization ; Multisensor fusion ; Odometers ; Optimization ; Pressure sensors ; Robustness ; Sensors ; Simultaneous localization and mapping ; Underwater detectors ; Underwater robots ; Visual observation</subject><ispartof>The International journal of robotics research, 2022-09, Vol.41 (11-12), p.1022-1042</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-65d82d18f3ca1af9decbe53c89e7d8b904c4b056dbf03d65370bdc5b25d3c0333</citedby><cites>FETCH-LOGICAL-c312t-65d82d18f3ca1af9decbe53c89e7d8b904c4b056dbf03d65370bdc5b25d3c0333</cites><orcidid>0000-0002-4094-9793 ; 0000-0002-4343-9561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/02783649221110259$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/02783649221110259$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Rahman, Sharmin</creatorcontrib><creatorcontrib>Quattrini Li, Alberto</creatorcontrib><creatorcontrib>Rekleitis, Ioannis</creatorcontrib><title>SVIn2: A multi-sensor fusion-based underwater SLAM system</title><title>The International journal of robotics research</title><description>This paper presents SVIn2, a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system, which fuses Scanning Profiling Sonar, Visual, Inertial, and water-pressure information in a non-linear optimization framework for small and large scale challenging underwater environments. The developed real-time system features robust initialization, loop-closing, and relocalization capabilities, which make the system reliable in the presence of haze, blurriness, low light, and lighting variations, typically observed in underwater scenarios. Over the last decade, Visual-Inertial Odometry and SLAM systems have shown excellent performance for mobile robots in indoor and outdoor environments, but often fail underwater due to the inherent difficulties in such environments. Our approach combats the weaknesses of previous approaches by utilizing additional sensors and exploiting their complementary characteristics. In particular, we use (1) acoustic range information for improved reconstruction and localization, thanks to the reliable distance measurement; (2) depth information from water-pressure sensor for robust initialization, refining the scale, and assisting to limit the drift in the tightly-coupled integration. The developed software—made open source—has been successfully used to test and validate the proposed system in both benchmark datasets and numerous real world underwater scenarios, including datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle Aqua2. SVIn2 demonstrated outstanding performance in terms of accuracy and robustness on those datasets and enabled other robotic tasks, for example, planning for underwater robots in presence of obstacles.</description><subject>Autonomous underwater vehicles</subject><subject>Datasets</subject><subject>Distance measurement</subject><subject>Haze</subject><subject>Indoor environments</subject><subject>Localization</subject><subject>Multisensor fusion</subject><subject>Odometers</subject><subject>Optimization</subject><subject>Pressure sensors</subject><subject>Robustness</subject><subject>Sensors</subject><subject>Simultaneous localization and mapping</subject><subject>Underwater detectors</subject><subject>Underwater robots</subject><subject>Visual observation</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFZ_gLuA66lz52YyM-5K8VGouKi6DfOKtLRJnUmQ_nsTIrgQV3dxvu9cOIRcA5sBSHnLuFRY5JpzAGBc6BMyAZkDRZDFKZkMOR2Ac3KR0pYxhgXTE6LX78ua32XzbN_t2g1NoU5NzKoubZqaWpOCz7rah_hl2hCz9Wr-nKVjasP-kpxVZpfC1c-dkreH-9fFE129PC4X8xV1CLylhfCKe1AVOgOm0j44GwQ6pYP0ymqWu9wyUXhbMfSFQMmsd8Jy4dExRJySm7H3EJvPLqS23DZdrPuXJZccUckcVU_BSLnYpBRDVR7iZm_isQRWDguVfxbqndnoJPMRflv_F74BohNkNQ</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Rahman, Sharmin</creator><creator>Quattrini Li, Alberto</creator><creator>Rekleitis, Ioannis</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4094-9793</orcidid><orcidid>https://orcid.org/0000-0002-4343-9561</orcidid></search><sort><creationdate>202209</creationdate><title>SVIn2: A multi-sensor fusion-based underwater SLAM system</title><author>Rahman, Sharmin ; Quattrini Li, Alberto ; Rekleitis, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-65d82d18f3ca1af9decbe53c89e7d8b904c4b056dbf03d65370bdc5b25d3c0333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autonomous underwater vehicles</topic><topic>Datasets</topic><topic>Distance measurement</topic><topic>Haze</topic><topic>Indoor environments</topic><topic>Localization</topic><topic>Multisensor fusion</topic><topic>Odometers</topic><topic>Optimization</topic><topic>Pressure sensors</topic><topic>Robustness</topic><topic>Sensors</topic><topic>Simultaneous localization and mapping</topic><topic>Underwater detectors</topic><topic>Underwater robots</topic><topic>Visual observation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Sharmin</creatorcontrib><creatorcontrib>Quattrini Li, Alberto</creatorcontrib><creatorcontrib>Rekleitis, Ioannis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Sharmin</au><au>Quattrini Li, Alberto</au><au>Rekleitis, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SVIn2: A multi-sensor fusion-based underwater SLAM system</atitle><jtitle>The International journal of robotics research</jtitle><date>2022-09</date><risdate>2022</risdate><volume>41</volume><issue>11-12</issue><spage>1022</spage><epage>1042</epage><pages>1022-1042</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>This paper presents SVIn2, a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system, which fuses Scanning Profiling Sonar, Visual, Inertial, and water-pressure information in a non-linear optimization framework for small and large scale challenging underwater environments. The developed real-time system features robust initialization, loop-closing, and relocalization capabilities, which make the system reliable in the presence of haze, blurriness, low light, and lighting variations, typically observed in underwater scenarios. Over the last decade, Visual-Inertial Odometry and SLAM systems have shown excellent performance for mobile robots in indoor and outdoor environments, but often fail underwater due to the inherent difficulties in such environments. Our approach combats the weaknesses of previous approaches by utilizing additional sensors and exploiting their complementary characteristics. In particular, we use (1) acoustic range information for improved reconstruction and localization, thanks to the reliable distance measurement; (2) depth information from water-pressure sensor for robust initialization, refining the scale, and assisting to limit the drift in the tightly-coupled integration. The developed software—made open source—has been successfully used to test and validate the proposed system in both benchmark datasets and numerous real world underwater scenarios, including datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle Aqua2. SVIn2 demonstrated outstanding performance in terms of accuracy and robustness on those datasets and enabled other robotic tasks, for example, planning for underwater robots in presence of obstacles.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/02783649221110259</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4094-9793</orcidid><orcidid>https://orcid.org/0000-0002-4343-9561</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2022-09, Vol.41 (11-12), p.1022-1042 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_journals_2723387438 |
source | SAGE Complete A-Z List |
subjects | Autonomous underwater vehicles Datasets Distance measurement Haze Indoor environments Localization Multisensor fusion Odometers Optimization Pressure sensors Robustness Sensors Simultaneous localization and mapping Underwater detectors Underwater robots Visual observation |
title | SVIn2: A multi-sensor fusion-based underwater SLAM system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SVIn2:%20A%20multi-sensor%20fusion-based%20underwater%20SLAM%20system&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Rahman,%20Sharmin&rft.date=2022-09&rft.volume=41&rft.issue=11-12&rft.spage=1022&rft.epage=1042&rft.pages=1022-1042&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/02783649221110259&rft_dat=%3Cproquest_cross%3E2723387438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723387438&rft_id=info:pmid/&rft_sage_id=10.1177_02783649221110259&rfr_iscdi=true |