Orthogonal Growth for Fabricating Hydrogel Sensors and Circuit Boards with In Situ Post‐Tunable Performance
Conductive hydrogels generally possess dual network structures consisting of hydrophilic cross‐linked polymer frameworks and conductive paths. The post‐modification of their structures and performance for fabricating devices with 3D conductive patterns is challenging because of their covalently cros...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2022-10, Vol.32 (41), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 41 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Fang, Yuanlai Chang, Qi Xiong, Xinhong Dong, Shihua Zhang, Chenglin Yang, Li Cui, Jiaxi |
description | Conductive hydrogels generally possess dual network structures consisting of hydrophilic cross‐linked polymer frameworks and conductive paths. The post‐modification of their structures and performance for fabricating devices with 3D conductive patterns is challenging because of their covalently cross‐linked complex matrices. Here, an orthogonal‐growth strategy is described for modulating all‐aspects of conductive hydrogels, including size, pattern, conductivity, and conductive path. In this strategy, the matrices controlling samples’ size and the functional components modulating samples’ conductivity can be orthogonally varied by feeding corresponding nutrients. Using poly(hydroxyethyl acrylate)‐polyaniline organohydrogels (PHEA‐PANI) as an example, it is demonstrated that the samples can incorporate the hydroxyethyl acrylate monomer to expand (21.9‐fold in weight is shown) or integrate aniline into the conductive networks to tune conductivity (from 0 to 42.6 mS cm‐1) without changing the sample size. Moreover, the growth of PANI is spatially selective. Exploiting the selective modulation of various parameters through this method, strain sensors with post‐modulated sensing performance and 3D hydrogel circuit boards are fabricated.
An orthogonal‐growth strategy can modulate all‐aspects of the conductive organohydrogels, including size, pattern, conductivity, and conductive path. Using selective modulations of various parameters in this method, the fabrication of strain sensors with post‐modulating sensing ability and 3D hydrogel circuit boards is displayed. |
doi_str_mv | 10.1002/adfm.202206222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723266412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723266412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2472-2f542997956285c00f2444d683b03c656a01de58be3393a3b61f917ffa3e06af3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMltiTrGvEycZS6E_UlErtUhslpPYras0LnaiqhuPwDPyJKQqKiPTPcP3HekehO4p6VFC4FEWetsDAkA4AFygDuWUB4xAcnnO9P0a3Xi_IYTGMQs7aDtz9dqubCVLPHJ2X6-xtg4PZeZMLmtTrfD4UDi7UiVeqMpb57GsCjwwLm9MjZ-sdIXHe9OKkwovTN3gufX19-fXsqlkVio8V66t3MoqV7foSsvSq7vf20Vvw5flYBxMZ6PJoD8NcghjCEBHIaRpnEYckignREMYhgVPWEZYziMuCS1UlGSKsZRJlnGqUxprLZkiXGrWRQ-n3p2zH43ytdjYxrU_egExMOA8pNBSvROVO-u9U1rsnNlKdxCUiOOk4jipOE_aCulJ2JtSHf6hRf95-Prn_gCFmntr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723266412</pqid></control><display><type>article</type><title>Orthogonal Growth for Fabricating Hydrogel Sensors and Circuit Boards with In Situ Post‐Tunable Performance</title><source>Access via Wiley Online Library</source><creator>Fang, Yuanlai ; Chang, Qi ; Xiong, Xinhong ; Dong, Shihua ; Zhang, Chenglin ; Yang, Li ; Cui, Jiaxi</creator><creatorcontrib>Fang, Yuanlai ; Chang, Qi ; Xiong, Xinhong ; Dong, Shihua ; Zhang, Chenglin ; Yang, Li ; Cui, Jiaxi</creatorcontrib><description>Conductive hydrogels generally possess dual network structures consisting of hydrophilic cross‐linked polymer frameworks and conductive paths. The post‐modification of their structures and performance for fabricating devices with 3D conductive patterns is challenging because of their covalently cross‐linked complex matrices. Here, an orthogonal‐growth strategy is described for modulating all‐aspects of conductive hydrogels, including size, pattern, conductivity, and conductive path. In this strategy, the matrices controlling samples’ size and the functional components modulating samples’ conductivity can be orthogonally varied by feeding corresponding nutrients. Using poly(hydroxyethyl acrylate)‐polyaniline organohydrogels (PHEA‐PANI) as an example, it is demonstrated that the samples can incorporate the hydroxyethyl acrylate monomer to expand (21.9‐fold in weight is shown) or integrate aniline into the conductive networks to tune conductivity (from 0 to 42.6 mS cm‐1) without changing the sample size. Moreover, the growth of PANI is spatially selective. Exploiting the selective modulation of various parameters through this method, strain sensors with post‐modulated sensing performance and 3D hydrogel circuit boards are fabricated.
An orthogonal‐growth strategy can modulate all‐aspects of the conductive organohydrogels, including size, pattern, conductivity, and conductive path. Using selective modulations of various parameters in this method, the fabrication of strain sensors with post‐modulating sensing ability and 3D hydrogel circuit boards is displayed.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202206222</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aniline ; Circuit boards ; conductive hydrogels ; growth ; hydrogel circuit boards ; Hydrogels ; Hydroxyethyl acrylate ; Materials science ; Nutrients ; Polyanilines ; post‐modifications ; Sensors ; strain sensors</subject><ispartof>Advanced functional materials, 2022-10, Vol.32 (41), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2472-2f542997956285c00f2444d683b03c656a01de58be3393a3b61f917ffa3e06af3</citedby><cites>FETCH-LOGICAL-c2472-2f542997956285c00f2444d683b03c656a01de58be3393a3b61f917ffa3e06af3</cites><orcidid>0000-0002-2550-979X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202206222$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202206222$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Fang, Yuanlai</creatorcontrib><creatorcontrib>Chang, Qi</creatorcontrib><creatorcontrib>Xiong, Xinhong</creatorcontrib><creatorcontrib>Dong, Shihua</creatorcontrib><creatorcontrib>Zhang, Chenglin</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Cui, Jiaxi</creatorcontrib><title>Orthogonal Growth for Fabricating Hydrogel Sensors and Circuit Boards with In Situ Post‐Tunable Performance</title><title>Advanced functional materials</title><description>Conductive hydrogels generally possess dual network structures consisting of hydrophilic cross‐linked polymer frameworks and conductive paths. The post‐modification of their structures and performance for fabricating devices with 3D conductive patterns is challenging because of their covalently cross‐linked complex matrices. Here, an orthogonal‐growth strategy is described for modulating all‐aspects of conductive hydrogels, including size, pattern, conductivity, and conductive path. In this strategy, the matrices controlling samples’ size and the functional components modulating samples’ conductivity can be orthogonally varied by feeding corresponding nutrients. Using poly(hydroxyethyl acrylate)‐polyaniline organohydrogels (PHEA‐PANI) as an example, it is demonstrated that the samples can incorporate the hydroxyethyl acrylate monomer to expand (21.9‐fold in weight is shown) or integrate aniline into the conductive networks to tune conductivity (from 0 to 42.6 mS cm‐1) without changing the sample size. Moreover, the growth of PANI is spatially selective. Exploiting the selective modulation of various parameters through this method, strain sensors with post‐modulated sensing performance and 3D hydrogel circuit boards are fabricated.
An orthogonal‐growth strategy can modulate all‐aspects of the conductive organohydrogels, including size, pattern, conductivity, and conductive path. Using selective modulations of various parameters in this method, the fabrication of strain sensors with post‐modulating sensing ability and 3D hydrogel circuit boards is displayed.</description><subject>Aniline</subject><subject>Circuit boards</subject><subject>conductive hydrogels</subject><subject>growth</subject><subject>hydrogel circuit boards</subject><subject>Hydrogels</subject><subject>Hydroxyethyl acrylate</subject><subject>Materials science</subject><subject>Nutrients</subject><subject>Polyanilines</subject><subject>post‐modifications</subject><subject>Sensors</subject><subject>strain sensors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMltiTrGvEycZS6E_UlErtUhslpPYras0LnaiqhuPwDPyJKQqKiPTPcP3HekehO4p6VFC4FEWetsDAkA4AFygDuWUB4xAcnnO9P0a3Xi_IYTGMQs7aDtz9dqubCVLPHJ2X6-xtg4PZeZMLmtTrfD4UDi7UiVeqMpb57GsCjwwLm9MjZ-sdIXHe9OKkwovTN3gufX19-fXsqlkVio8V66t3MoqV7foSsvSq7vf20Vvw5flYBxMZ6PJoD8NcghjCEBHIaRpnEYckignREMYhgVPWEZYziMuCS1UlGSKsZRJlnGqUxprLZkiXGrWRQ-n3p2zH43ytdjYxrU_egExMOA8pNBSvROVO-u9U1rsnNlKdxCUiOOk4jipOE_aCulJ2JtSHf6hRf95-Prn_gCFmntr</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Fang, Yuanlai</creator><creator>Chang, Qi</creator><creator>Xiong, Xinhong</creator><creator>Dong, Shihua</creator><creator>Zhang, Chenglin</creator><creator>Yang, Li</creator><creator>Cui, Jiaxi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2550-979X</orcidid></search><sort><creationdate>20221001</creationdate><title>Orthogonal Growth for Fabricating Hydrogel Sensors and Circuit Boards with In Situ Post‐Tunable Performance</title><author>Fang, Yuanlai ; Chang, Qi ; Xiong, Xinhong ; Dong, Shihua ; Zhang, Chenglin ; Yang, Li ; Cui, Jiaxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2472-2f542997956285c00f2444d683b03c656a01de58be3393a3b61f917ffa3e06af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aniline</topic><topic>Circuit boards</topic><topic>conductive hydrogels</topic><topic>growth</topic><topic>hydrogel circuit boards</topic><topic>Hydrogels</topic><topic>Hydroxyethyl acrylate</topic><topic>Materials science</topic><topic>Nutrients</topic><topic>Polyanilines</topic><topic>post‐modifications</topic><topic>Sensors</topic><topic>strain sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Yuanlai</creatorcontrib><creatorcontrib>Chang, Qi</creatorcontrib><creatorcontrib>Xiong, Xinhong</creatorcontrib><creatorcontrib>Dong, Shihua</creatorcontrib><creatorcontrib>Zhang, Chenglin</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Cui, Jiaxi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Yuanlai</au><au>Chang, Qi</au><au>Xiong, Xinhong</au><au>Dong, Shihua</au><au>Zhang, Chenglin</au><au>Yang, Li</au><au>Cui, Jiaxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal Growth for Fabricating Hydrogel Sensors and Circuit Boards with In Situ Post‐Tunable Performance</atitle><jtitle>Advanced functional materials</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>32</volume><issue>41</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Conductive hydrogels generally possess dual network structures consisting of hydrophilic cross‐linked polymer frameworks and conductive paths. The post‐modification of their structures and performance for fabricating devices with 3D conductive patterns is challenging because of their covalently cross‐linked complex matrices. Here, an orthogonal‐growth strategy is described for modulating all‐aspects of conductive hydrogels, including size, pattern, conductivity, and conductive path. In this strategy, the matrices controlling samples’ size and the functional components modulating samples’ conductivity can be orthogonally varied by feeding corresponding nutrients. Using poly(hydroxyethyl acrylate)‐polyaniline organohydrogels (PHEA‐PANI) as an example, it is demonstrated that the samples can incorporate the hydroxyethyl acrylate monomer to expand (21.9‐fold in weight is shown) or integrate aniline into the conductive networks to tune conductivity (from 0 to 42.6 mS cm‐1) without changing the sample size. Moreover, the growth of PANI is spatially selective. Exploiting the selective modulation of various parameters through this method, strain sensors with post‐modulated sensing performance and 3D hydrogel circuit boards are fabricated.
An orthogonal‐growth strategy can modulate all‐aspects of the conductive organohydrogels, including size, pattern, conductivity, and conductive path. Using selective modulations of various parameters in this method, the fabrication of strain sensors with post‐modulating sensing ability and 3D hydrogel circuit boards is displayed.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202206222</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2550-979X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-10, Vol.32 (41), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2723266412 |
source | Access via Wiley Online Library |
subjects | Aniline Circuit boards conductive hydrogels growth hydrogel circuit boards Hydrogels Hydroxyethyl acrylate Materials science Nutrients Polyanilines post‐modifications Sensors strain sensors |
title | Orthogonal Growth for Fabricating Hydrogel Sensors and Circuit Boards with In Situ Post‐Tunable Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20Growth%20for%20Fabricating%20Hydrogel%20Sensors%20and%20Circuit%20Boards%20with%20In%20Situ%20Post%E2%80%90Tunable%20Performance&rft.jtitle=Advanced%20functional%20materials&rft.au=Fang,%20Yuanlai&rft.date=2022-10-01&rft.volume=32&rft.issue=41&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202206222&rft_dat=%3Cproquest_cross%3E2723266412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723266412&rft_id=info:pmid/&rfr_iscdi=true |