Numerical modelling and simulation of heat sink assisted thermal sintering of titania film on polymer substrates for the fabrication of high-performance flexible dye sensitized solar cells
In this paper, we report a mathematical model developed to study thermal characteristics of heat sink assisted elevated temperature sintering of TiO2 coated polymer photoelectrode used for the fabrication of high-performance flexible dye sensitized solar cells (FDSSCs). Thermal sintering of TiO2 fil...
Gespeichert in:
Veröffentlicht in: | Chemical engineering research & design 2022-05, Vol.181, p.209-219 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 219 |
---|---|
container_issue | |
container_start_page | 209 |
container_title | Chemical engineering research & design |
container_volume | 181 |
creator | Gireesh Baiju, K. Nandanwar, Mahendra N. Jayanarayanan, K. Kumaresan, Duraisamy |
description | In this paper, we report a mathematical model developed to study thermal characteristics of heat sink assisted elevated temperature sintering of TiO2 coated polymer photoelectrode used for the fabrication of high-performance flexible dye sensitized solar cells (FDSSCs). Thermal sintering of TiO2 film deposited indium tin oxide coated polyethylene terephthalate (ITO PET) is usually restricted by the polymer serviceability temperature limit (~ 150 °C), but the heat sink assisted sintering process increases sintering temperature without affecting the polymer integrity, produces effectively sintered TiO2 film on the polymer surface and boosts the photovoltaic performance of FDSSCs. The developed model involves simultaneous heat transfer and coolant flow within the system which is dynamically coupled with an external coolant reservoir. Using this model, effects of various parameters such as coolant flow rate, heat sink material, heat sink geometry, and sintering duration on the thermal characteristics of TiO2 sintered on polymer substrate are studied. Also, the FDSSCs fabricated using this sintering method have shown power conversion efficiency increased significantly because of the rise in sintering temperature is controlled by the heat sink thermal parameters. Besides, possibilities of scaling-up of this sintering system for the fabrication of large area FDSSCs are investigated.
[Display omitted]
•Heat sink assisted thermal sintering of TiO2 on polymer photoelectrode is modelled.•Model involves simultaneous sintering and heat transfer between heat source and sink.•Effects of various heat sink parameters on the thermal sintering process are studied.•Heat sink assisted sintering process improves efficiency of flexible polymer solar cells. |
doi_str_mv | 10.1016/j.cherd.2022.03.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723198953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876222001113</els_id><sourcerecordid>2723198953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-bf5917733a4acaad2bfb89c0b95c8a4f4c0c2cb3564da892adce44d5331f2a03</originalsourceid><addsrcrecordid>eNp9kc2u0zAQhS0EEqXwBGwssU7wT5omCxboij_p6t7N3VsTe3zr4sTFdhDl2Xg4phSxZGVp5nxzZnwYey1FK4Xs3x5be8DsWiWUaoVuhdRP2Ebuu67Ru14_ZRuhet0M-149Zy9KOQohqDts2K-7dcYcLEQ-J4cxhuWRw-J4CfMaoYa08OT5AaFSafnKoZRQKjpeyXEmjKqVJhBGuhoqLAG4D3HmhJ5SPNN8Xtap1AwVC_cpX1juYbr4_nMIj4fmhJnaMyyW-hF_hCkid2fkBZcSavhJviVFyNzSquUle-YhFnz1992yh48fHm4-N7f3n77cvL9trOplbSa_G-V-rzV0YAGcmvw0jFZM484O0PnOCqvsRD_VORhGBc5i17md1tIrEHrL3lzHnnL6tmKp5pjWvJCjUXul5TiMpN0yfVXZnErJ6M0phxny2UhhLimZo_mTkrmkZIQ2lBJR764U0v7fA2ZTbEC634WMthqXwn_53wiwols</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723198953</pqid></control><display><type>article</type><title>Numerical modelling and simulation of heat sink assisted thermal sintering of titania film on polymer substrates for the fabrication of high-performance flexible dye sensitized solar cells</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gireesh Baiju, K. ; Nandanwar, Mahendra N. ; Jayanarayanan, K. ; Kumaresan, Duraisamy</creator><creatorcontrib>Gireesh Baiju, K. ; Nandanwar, Mahendra N. ; Jayanarayanan, K. ; Kumaresan, Duraisamy</creatorcontrib><description>In this paper, we report a mathematical model developed to study thermal characteristics of heat sink assisted elevated temperature sintering of TiO2 coated polymer photoelectrode used for the fabrication of high-performance flexible dye sensitized solar cells (FDSSCs). Thermal sintering of TiO2 film deposited indium tin oxide coated polyethylene terephthalate (ITO PET) is usually restricted by the polymer serviceability temperature limit (~ 150 °C), but the heat sink assisted sintering process increases sintering temperature without affecting the polymer integrity, produces effectively sintered TiO2 film on the polymer surface and boosts the photovoltaic performance of FDSSCs. The developed model involves simultaneous heat transfer and coolant flow within the system which is dynamically coupled with an external coolant reservoir. Using this model, effects of various parameters such as coolant flow rate, heat sink material, heat sink geometry, and sintering duration on the thermal characteristics of TiO2 sintered on polymer substrate are studied. Also, the FDSSCs fabricated using this sintering method have shown power conversion efficiency increased significantly because of the rise in sintering temperature is controlled by the heat sink thermal parameters. Besides, possibilities of scaling-up of this sintering system for the fabrication of large area FDSSCs are investigated.
[Display omitted]
•Heat sink assisted thermal sintering of TiO2 on polymer photoelectrode is modelled.•Model involves simultaneous sintering and heat transfer between heat source and sink.•Effects of various heat sink parameters on the thermal sintering process are studied.•Heat sink assisted sintering process improves efficiency of flexible polymer solar cells.</description><identifier>ISSN: 0263-8762</identifier><identifier>EISSN: 1744-3563</identifier><identifier>DOI: 10.1016/j.cherd.2022.03.013</identifier><language>eng</language><publisher>Rugby: Elsevier Ltd</publisher><subject>Convective heat transfer ; Coolants ; Dye-sensitized solar cells ; Dyes ; Energy conversion efficiency ; Flexible polymer solar cells ; Flow velocity ; Heat sink ; Heat sinks ; Heat transfer ; High temperature ; Indium tin oxides ; Mathematical models ; Metal fabrication ; Numerical analysis ; Parameters ; Polyethylene terephthalate ; Polymer films ; Polymers ; Simulation ; Sintering ; Substrates ; Thermal sintering ; Thermodynamic properties ; Titanium ; Titanium dioxide</subject><ispartof>Chemical engineering research & design, 2022-05, Vol.181, p.209-219</ispartof><rights>2022 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-bf5917733a4acaad2bfb89c0b95c8a4f4c0c2cb3564da892adce44d5331f2a03</citedby><cites>FETCH-LOGICAL-c261t-bf5917733a4acaad2bfb89c0b95c8a4f4c0c2cb3564da892adce44d5331f2a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cherd.2022.03.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gireesh Baiju, K.</creatorcontrib><creatorcontrib>Nandanwar, Mahendra N.</creatorcontrib><creatorcontrib>Jayanarayanan, K.</creatorcontrib><creatorcontrib>Kumaresan, Duraisamy</creatorcontrib><title>Numerical modelling and simulation of heat sink assisted thermal sintering of titania film on polymer substrates for the fabrication of high-performance flexible dye sensitized solar cells</title><title>Chemical engineering research & design</title><description>In this paper, we report a mathematical model developed to study thermal characteristics of heat sink assisted elevated temperature sintering of TiO2 coated polymer photoelectrode used for the fabrication of high-performance flexible dye sensitized solar cells (FDSSCs). Thermal sintering of TiO2 film deposited indium tin oxide coated polyethylene terephthalate (ITO PET) is usually restricted by the polymer serviceability temperature limit (~ 150 °C), but the heat sink assisted sintering process increases sintering temperature without affecting the polymer integrity, produces effectively sintered TiO2 film on the polymer surface and boosts the photovoltaic performance of FDSSCs. The developed model involves simultaneous heat transfer and coolant flow within the system which is dynamically coupled with an external coolant reservoir. Using this model, effects of various parameters such as coolant flow rate, heat sink material, heat sink geometry, and sintering duration on the thermal characteristics of TiO2 sintered on polymer substrate are studied. Also, the FDSSCs fabricated using this sintering method have shown power conversion efficiency increased significantly because of the rise in sintering temperature is controlled by the heat sink thermal parameters. Besides, possibilities of scaling-up of this sintering system for the fabrication of large area FDSSCs are investigated.
[Display omitted]
•Heat sink assisted thermal sintering of TiO2 on polymer photoelectrode is modelled.•Model involves simultaneous sintering and heat transfer between heat source and sink.•Effects of various heat sink parameters on the thermal sintering process are studied.•Heat sink assisted sintering process improves efficiency of flexible polymer solar cells.</description><subject>Convective heat transfer</subject><subject>Coolants</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>Energy conversion efficiency</subject><subject>Flexible polymer solar cells</subject><subject>Flow velocity</subject><subject>Heat sink</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Indium tin oxides</subject><subject>Mathematical models</subject><subject>Metal fabrication</subject><subject>Numerical analysis</subject><subject>Parameters</subject><subject>Polyethylene terephthalate</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Simulation</subject><subject>Sintering</subject><subject>Substrates</subject><subject>Thermal sintering</subject><subject>Thermodynamic properties</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>0263-8762</issn><issn>1744-3563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc2u0zAQhS0EEqXwBGwssU7wT5omCxboij_p6t7N3VsTe3zr4sTFdhDl2Xg4phSxZGVp5nxzZnwYey1FK4Xs3x5be8DsWiWUaoVuhdRP2Ebuu67Ru14_ZRuhet0M-149Zy9KOQohqDts2K-7dcYcLEQ-J4cxhuWRw-J4CfMaoYa08OT5AaFSafnKoZRQKjpeyXEmjKqVJhBGuhoqLAG4D3HmhJ5SPNN8Xtap1AwVC_cpX1juYbr4_nMIj4fmhJnaMyyW-hF_hCkid2fkBZcSavhJviVFyNzSquUle-YhFnz1992yh48fHm4-N7f3n77cvL9trOplbSa_G-V-rzV0YAGcmvw0jFZM484O0PnOCqvsRD_VORhGBc5i17md1tIrEHrL3lzHnnL6tmKp5pjWvJCjUXul5TiMpN0yfVXZnErJ6M0phxny2UhhLimZo_mTkrmkZIQ2lBJR764U0v7fA2ZTbEC634WMthqXwn_53wiwols</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Gireesh Baiju, K.</creator><creator>Nandanwar, Mahendra N.</creator><creator>Jayanarayanan, K.</creator><creator>Kumaresan, Duraisamy</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202205</creationdate><title>Numerical modelling and simulation of heat sink assisted thermal sintering of titania film on polymer substrates for the fabrication of high-performance flexible dye sensitized solar cells</title><author>Gireesh Baiju, K. ; Nandanwar, Mahendra N. ; Jayanarayanan, K. ; Kumaresan, Duraisamy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-bf5917733a4acaad2bfb89c0b95c8a4f4c0c2cb3564da892adce44d5331f2a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convective heat transfer</topic><topic>Coolants</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>Energy conversion efficiency</topic><topic>Flexible polymer solar cells</topic><topic>Flow velocity</topic><topic>Heat sink</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Indium tin oxides</topic><topic>Mathematical models</topic><topic>Metal fabrication</topic><topic>Numerical analysis</topic><topic>Parameters</topic><topic>Polyethylene terephthalate</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Simulation</topic><topic>Sintering</topic><topic>Substrates</topic><topic>Thermal sintering</topic><topic>Thermodynamic properties</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gireesh Baiju, K.</creatorcontrib><creatorcontrib>Nandanwar, Mahendra N.</creatorcontrib><creatorcontrib>Jayanarayanan, K.</creatorcontrib><creatorcontrib>Kumaresan, Duraisamy</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gireesh Baiju, K.</au><au>Nandanwar, Mahendra N.</au><au>Jayanarayanan, K.</au><au>Kumaresan, Duraisamy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modelling and simulation of heat sink assisted thermal sintering of titania film on polymer substrates for the fabrication of high-performance flexible dye sensitized solar cells</atitle><jtitle>Chemical engineering research & design</jtitle><date>2022-05</date><risdate>2022</risdate><volume>181</volume><spage>209</spage><epage>219</epage><pages>209-219</pages><issn>0263-8762</issn><eissn>1744-3563</eissn><abstract>In this paper, we report a mathematical model developed to study thermal characteristics of heat sink assisted elevated temperature sintering of TiO2 coated polymer photoelectrode used for the fabrication of high-performance flexible dye sensitized solar cells (FDSSCs). Thermal sintering of TiO2 film deposited indium tin oxide coated polyethylene terephthalate (ITO PET) is usually restricted by the polymer serviceability temperature limit (~ 150 °C), but the heat sink assisted sintering process increases sintering temperature without affecting the polymer integrity, produces effectively sintered TiO2 film on the polymer surface and boosts the photovoltaic performance of FDSSCs. The developed model involves simultaneous heat transfer and coolant flow within the system which is dynamically coupled with an external coolant reservoir. Using this model, effects of various parameters such as coolant flow rate, heat sink material, heat sink geometry, and sintering duration on the thermal characteristics of TiO2 sintered on polymer substrate are studied. Also, the FDSSCs fabricated using this sintering method have shown power conversion efficiency increased significantly because of the rise in sintering temperature is controlled by the heat sink thermal parameters. Besides, possibilities of scaling-up of this sintering system for the fabrication of large area FDSSCs are investigated.
[Display omitted]
•Heat sink assisted thermal sintering of TiO2 on polymer photoelectrode is modelled.•Model involves simultaneous sintering and heat transfer between heat source and sink.•Effects of various heat sink parameters on the thermal sintering process are studied.•Heat sink assisted sintering process improves efficiency of flexible polymer solar cells.</abstract><cop>Rugby</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cherd.2022.03.013</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8762 |
ispartof | Chemical engineering research & design, 2022-05, Vol.181, p.209-219 |
issn | 0263-8762 1744-3563 |
language | eng |
recordid | cdi_proquest_journals_2723198953 |
source | Access via ScienceDirect (Elsevier) |
subjects | Convective heat transfer Coolants Dye-sensitized solar cells Dyes Energy conversion efficiency Flexible polymer solar cells Flow velocity Heat sink Heat sinks Heat transfer High temperature Indium tin oxides Mathematical models Metal fabrication Numerical analysis Parameters Polyethylene terephthalate Polymer films Polymers Simulation Sintering Substrates Thermal sintering Thermodynamic properties Titanium Titanium dioxide |
title | Numerical modelling and simulation of heat sink assisted thermal sintering of titania film on polymer substrates for the fabrication of high-performance flexible dye sensitized solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modelling%20and%20simulation%20of%20heat%20sink%20assisted%20thermal%20sintering%20of%20titania%20film%20on%20polymer%20substrates%20for%20the%20fabrication%20of%20high-performance%20flexible%20dye%20sensitized%20solar%20cells&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Gireesh%20Baiju,%20K.&rft.date=2022-05&rft.volume=181&rft.spage=209&rft.epage=219&rft.pages=209-219&rft.issn=0263-8762&rft.eissn=1744-3563&rft_id=info:doi/10.1016/j.cherd.2022.03.013&rft_dat=%3Cproquest_cross%3E2723198953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723198953&rft_id=info:pmid/&rft_els_id=S0263876222001113&rfr_iscdi=true |