Numerical modelling and simulation of heat sink assisted thermal sintering of titania film on polymer substrates for the fabrication of high-performance flexible dye sensitized solar cells

In this paper, we report a mathematical model developed to study thermal characteristics of heat sink assisted elevated temperature sintering of TiO2 coated polymer photoelectrode used for the fabrication of high-performance flexible dye sensitized solar cells (FDSSCs). Thermal sintering of TiO2 fil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering research & design 2022-05, Vol.181, p.209-219
Hauptverfasser: Gireesh Baiju, K., Nandanwar, Mahendra N., Jayanarayanan, K., Kumaresan, Duraisamy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue
container_start_page 209
container_title Chemical engineering research & design
container_volume 181
creator Gireesh Baiju, K.
Nandanwar, Mahendra N.
Jayanarayanan, K.
Kumaresan, Duraisamy
description In this paper, we report a mathematical model developed to study thermal characteristics of heat sink assisted elevated temperature sintering of TiO2 coated polymer photoelectrode used for the fabrication of high-performance flexible dye sensitized solar cells (FDSSCs). Thermal sintering of TiO2 film deposited indium tin oxide coated polyethylene terephthalate (ITO PET) is usually restricted by the polymer serviceability temperature limit (~ 150 °C), but the heat sink assisted sintering process increases sintering temperature without affecting the polymer integrity, produces effectively sintered TiO2 film on the polymer surface and boosts the photovoltaic performance of FDSSCs. The developed model involves simultaneous heat transfer and coolant flow within the system which is dynamically coupled with an external coolant reservoir. Using this model, effects of various parameters such as coolant flow rate, heat sink material, heat sink geometry, and sintering duration on the thermal characteristics of TiO2 sintered on polymer substrate are studied. Also, the FDSSCs fabricated using this sintering method have shown power conversion efficiency increased significantly because of the rise in sintering temperature is controlled by the heat sink thermal parameters. Besides, possibilities of scaling-up of this sintering system for the fabrication of large area FDSSCs are investigated. [Display omitted] •Heat sink assisted thermal sintering of TiO2 on polymer photoelectrode is modelled.•Model involves simultaneous sintering and heat transfer between heat source and sink.•Effects of various heat sink parameters on the thermal sintering process are studied.•Heat sink assisted sintering process improves efficiency of flexible polymer solar cells.
doi_str_mv 10.1016/j.cherd.2022.03.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723198953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876222001113</els_id><sourcerecordid>2723198953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-bf5917733a4acaad2bfb89c0b95c8a4f4c0c2cb3564da892adce44d5331f2a03</originalsourceid><addsrcrecordid>eNp9kc2u0zAQhS0EEqXwBGwssU7wT5omCxboij_p6t7N3VsTe3zr4sTFdhDl2Xg4phSxZGVp5nxzZnwYey1FK4Xs3x5be8DsWiWUaoVuhdRP2Ebuu67Ru14_ZRuhet0M-149Zy9KOQohqDts2K-7dcYcLEQ-J4cxhuWRw-J4CfMaoYa08OT5AaFSafnKoZRQKjpeyXEmjKqVJhBGuhoqLAG4D3HmhJ5SPNN8Xtap1AwVC_cpX1juYbr4_nMIj4fmhJnaMyyW-hF_hCkid2fkBZcSavhJviVFyNzSquUle-YhFnz1992yh48fHm4-N7f3n77cvL9trOplbSa_G-V-rzV0YAGcmvw0jFZM484O0PnOCqvsRD_VORhGBc5i17md1tIrEHrL3lzHnnL6tmKp5pjWvJCjUXul5TiMpN0yfVXZnErJ6M0phxny2UhhLimZo_mTkrmkZIQ2lBJR764U0v7fA2ZTbEC634WMthqXwn_53wiwols</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723198953</pqid></control><display><type>article</type><title>Numerical modelling and simulation of heat sink assisted thermal sintering of titania film on polymer substrates for the fabrication of high-performance flexible dye sensitized solar cells</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gireesh Baiju, K. ; Nandanwar, Mahendra N. ; Jayanarayanan, K. ; Kumaresan, Duraisamy</creator><creatorcontrib>Gireesh Baiju, K. ; Nandanwar, Mahendra N. ; Jayanarayanan, K. ; Kumaresan, Duraisamy</creatorcontrib><description>In this paper, we report a mathematical model developed to study thermal characteristics of heat sink assisted elevated temperature sintering of TiO2 coated polymer photoelectrode used for the fabrication of high-performance flexible dye sensitized solar cells (FDSSCs). Thermal sintering of TiO2 film deposited indium tin oxide coated polyethylene terephthalate (ITO PET) is usually restricted by the polymer serviceability temperature limit (~ 150 °C), but the heat sink assisted sintering process increases sintering temperature without affecting the polymer integrity, produces effectively sintered TiO2 film on the polymer surface and boosts the photovoltaic performance of FDSSCs. The developed model involves simultaneous heat transfer and coolant flow within the system which is dynamically coupled with an external coolant reservoir. Using this model, effects of various parameters such as coolant flow rate, heat sink material, heat sink geometry, and sintering duration on the thermal characteristics of TiO2 sintered on polymer substrate are studied. Also, the FDSSCs fabricated using this sintering method have shown power conversion efficiency increased significantly because of the rise in sintering temperature is controlled by the heat sink thermal parameters. Besides, possibilities of scaling-up of this sintering system for the fabrication of large area FDSSCs are investigated. [Display omitted] •Heat sink assisted thermal sintering of TiO2 on polymer photoelectrode is modelled.•Model involves simultaneous sintering and heat transfer between heat source and sink.•Effects of various heat sink parameters on the thermal sintering process are studied.•Heat sink assisted sintering process improves efficiency of flexible polymer solar cells.</description><identifier>ISSN: 0263-8762</identifier><identifier>EISSN: 1744-3563</identifier><identifier>DOI: 10.1016/j.cherd.2022.03.013</identifier><language>eng</language><publisher>Rugby: Elsevier Ltd</publisher><subject>Convective heat transfer ; Coolants ; Dye-sensitized solar cells ; Dyes ; Energy conversion efficiency ; Flexible polymer solar cells ; Flow velocity ; Heat sink ; Heat sinks ; Heat transfer ; High temperature ; Indium tin oxides ; Mathematical models ; Metal fabrication ; Numerical analysis ; Parameters ; Polyethylene terephthalate ; Polymer films ; Polymers ; Simulation ; Sintering ; Substrates ; Thermal sintering ; Thermodynamic properties ; Titanium ; Titanium dioxide</subject><ispartof>Chemical engineering research &amp; design, 2022-05, Vol.181, p.209-219</ispartof><rights>2022 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-bf5917733a4acaad2bfb89c0b95c8a4f4c0c2cb3564da892adce44d5331f2a03</citedby><cites>FETCH-LOGICAL-c261t-bf5917733a4acaad2bfb89c0b95c8a4f4c0c2cb3564da892adce44d5331f2a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cherd.2022.03.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gireesh Baiju, K.</creatorcontrib><creatorcontrib>Nandanwar, Mahendra N.</creatorcontrib><creatorcontrib>Jayanarayanan, K.</creatorcontrib><creatorcontrib>Kumaresan, Duraisamy</creatorcontrib><title>Numerical modelling and simulation of heat sink assisted thermal sintering of titania film on polymer substrates for the fabrication of high-performance flexible dye sensitized solar cells</title><title>Chemical engineering research &amp; design</title><description>In this paper, we report a mathematical model developed to study thermal characteristics of heat sink assisted elevated temperature sintering of TiO2 coated polymer photoelectrode used for the fabrication of high-performance flexible dye sensitized solar cells (FDSSCs). Thermal sintering of TiO2 film deposited indium tin oxide coated polyethylene terephthalate (ITO PET) is usually restricted by the polymer serviceability temperature limit (~ 150 °C), but the heat sink assisted sintering process increases sintering temperature without affecting the polymer integrity, produces effectively sintered TiO2 film on the polymer surface and boosts the photovoltaic performance of FDSSCs. The developed model involves simultaneous heat transfer and coolant flow within the system which is dynamically coupled with an external coolant reservoir. Using this model, effects of various parameters such as coolant flow rate, heat sink material, heat sink geometry, and sintering duration on the thermal characteristics of TiO2 sintered on polymer substrate are studied. Also, the FDSSCs fabricated using this sintering method have shown power conversion efficiency increased significantly because of the rise in sintering temperature is controlled by the heat sink thermal parameters. Besides, possibilities of scaling-up of this sintering system for the fabrication of large area FDSSCs are investigated. [Display omitted] •Heat sink assisted thermal sintering of TiO2 on polymer photoelectrode is modelled.•Model involves simultaneous sintering and heat transfer between heat source and sink.•Effects of various heat sink parameters on the thermal sintering process are studied.•Heat sink assisted sintering process improves efficiency of flexible polymer solar cells.</description><subject>Convective heat transfer</subject><subject>Coolants</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>Energy conversion efficiency</subject><subject>Flexible polymer solar cells</subject><subject>Flow velocity</subject><subject>Heat sink</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Indium tin oxides</subject><subject>Mathematical models</subject><subject>Metal fabrication</subject><subject>Numerical analysis</subject><subject>Parameters</subject><subject>Polyethylene terephthalate</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Simulation</subject><subject>Sintering</subject><subject>Substrates</subject><subject>Thermal sintering</subject><subject>Thermodynamic properties</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>0263-8762</issn><issn>1744-3563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc2u0zAQhS0EEqXwBGwssU7wT5omCxboij_p6t7N3VsTe3zr4sTFdhDl2Xg4phSxZGVp5nxzZnwYey1FK4Xs3x5be8DsWiWUaoVuhdRP2Ebuu67Ru14_ZRuhet0M-149Zy9KOQohqDts2K-7dcYcLEQ-J4cxhuWRw-J4CfMaoYa08OT5AaFSafnKoZRQKjpeyXEmjKqVJhBGuhoqLAG4D3HmhJ5SPNN8Xtap1AwVC_cpX1juYbr4_nMIj4fmhJnaMyyW-hF_hCkid2fkBZcSavhJviVFyNzSquUle-YhFnz1992yh48fHm4-N7f3n77cvL9trOplbSa_G-V-rzV0YAGcmvw0jFZM484O0PnOCqvsRD_VORhGBc5i17md1tIrEHrL3lzHnnL6tmKp5pjWvJCjUXul5TiMpN0yfVXZnErJ6M0phxny2UhhLimZo_mTkrmkZIQ2lBJR764U0v7fA2ZTbEC634WMthqXwn_53wiwols</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Gireesh Baiju, K.</creator><creator>Nandanwar, Mahendra N.</creator><creator>Jayanarayanan, K.</creator><creator>Kumaresan, Duraisamy</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202205</creationdate><title>Numerical modelling and simulation of heat sink assisted thermal sintering of titania film on polymer substrates for the fabrication of high-performance flexible dye sensitized solar cells</title><author>Gireesh Baiju, K. ; Nandanwar, Mahendra N. ; Jayanarayanan, K. ; Kumaresan, Duraisamy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-bf5917733a4acaad2bfb89c0b95c8a4f4c0c2cb3564da892adce44d5331f2a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convective heat transfer</topic><topic>Coolants</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>Energy conversion efficiency</topic><topic>Flexible polymer solar cells</topic><topic>Flow velocity</topic><topic>Heat sink</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Indium tin oxides</topic><topic>Mathematical models</topic><topic>Metal fabrication</topic><topic>Numerical analysis</topic><topic>Parameters</topic><topic>Polyethylene terephthalate</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Simulation</topic><topic>Sintering</topic><topic>Substrates</topic><topic>Thermal sintering</topic><topic>Thermodynamic properties</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gireesh Baiju, K.</creatorcontrib><creatorcontrib>Nandanwar, Mahendra N.</creatorcontrib><creatorcontrib>Jayanarayanan, K.</creatorcontrib><creatorcontrib>Kumaresan, Duraisamy</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gireesh Baiju, K.</au><au>Nandanwar, Mahendra N.</au><au>Jayanarayanan, K.</au><au>Kumaresan, Duraisamy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modelling and simulation of heat sink assisted thermal sintering of titania film on polymer substrates for the fabrication of high-performance flexible dye sensitized solar cells</atitle><jtitle>Chemical engineering research &amp; design</jtitle><date>2022-05</date><risdate>2022</risdate><volume>181</volume><spage>209</spage><epage>219</epage><pages>209-219</pages><issn>0263-8762</issn><eissn>1744-3563</eissn><abstract>In this paper, we report a mathematical model developed to study thermal characteristics of heat sink assisted elevated temperature sintering of TiO2 coated polymer photoelectrode used for the fabrication of high-performance flexible dye sensitized solar cells (FDSSCs). Thermal sintering of TiO2 film deposited indium tin oxide coated polyethylene terephthalate (ITO PET) is usually restricted by the polymer serviceability temperature limit (~ 150 °C), but the heat sink assisted sintering process increases sintering temperature without affecting the polymer integrity, produces effectively sintered TiO2 film on the polymer surface and boosts the photovoltaic performance of FDSSCs. The developed model involves simultaneous heat transfer and coolant flow within the system which is dynamically coupled with an external coolant reservoir. Using this model, effects of various parameters such as coolant flow rate, heat sink material, heat sink geometry, and sintering duration on the thermal characteristics of TiO2 sintered on polymer substrate are studied. Also, the FDSSCs fabricated using this sintering method have shown power conversion efficiency increased significantly because of the rise in sintering temperature is controlled by the heat sink thermal parameters. Besides, possibilities of scaling-up of this sintering system for the fabrication of large area FDSSCs are investigated. [Display omitted] •Heat sink assisted thermal sintering of TiO2 on polymer photoelectrode is modelled.•Model involves simultaneous sintering and heat transfer between heat source and sink.•Effects of various heat sink parameters on the thermal sintering process are studied.•Heat sink assisted sintering process improves efficiency of flexible polymer solar cells.</abstract><cop>Rugby</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cherd.2022.03.013</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8762
ispartof Chemical engineering research & design, 2022-05, Vol.181, p.209-219
issn 0263-8762
1744-3563
language eng
recordid cdi_proquest_journals_2723198953
source Access via ScienceDirect (Elsevier)
subjects Convective heat transfer
Coolants
Dye-sensitized solar cells
Dyes
Energy conversion efficiency
Flexible polymer solar cells
Flow velocity
Heat sink
Heat sinks
Heat transfer
High temperature
Indium tin oxides
Mathematical models
Metal fabrication
Numerical analysis
Parameters
Polyethylene terephthalate
Polymer films
Polymers
Simulation
Sintering
Substrates
Thermal sintering
Thermodynamic properties
Titanium
Titanium dioxide
title Numerical modelling and simulation of heat sink assisted thermal sintering of titania film on polymer substrates for the fabrication of high-performance flexible dye sensitized solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modelling%20and%20simulation%20of%20heat%20sink%20assisted%20thermal%20sintering%20of%20titania%20film%20on%20polymer%20substrates%20for%20the%20fabrication%20of%20high-performance%20flexible%20dye%20sensitized%20solar%20cells&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Gireesh%20Baiju,%20K.&rft.date=2022-05&rft.volume=181&rft.spage=209&rft.epage=219&rft.pages=209-219&rft.issn=0263-8762&rft.eissn=1744-3563&rft_id=info:doi/10.1016/j.cherd.2022.03.013&rft_dat=%3Cproquest_cross%3E2723198953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723198953&rft_id=info:pmid/&rft_els_id=S0263876222001113&rfr_iscdi=true