Hydrodynamics of gas-liquid bubble columns under bubbling, transient, and jetting flow regimes using volume of fluid computational fluid dynamics
A volume of fluid computational fluid dynamics (VOF-CFD) model was used to investigate hydrodynamics of air-water bubble columns in the gas distributor region under bubbling, transient, and jetting flow regimes. The Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence eq...
Gespeichert in:
Veröffentlicht in: | Chemical engineering research & design 2022-06, Vol.182, p.616-628 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 628 |
---|---|
container_issue | |
container_start_page | 616 |
container_title | Chemical engineering research & design |
container_volume | 182 |
creator | Nguyen, Loc Xuan Ngo, Son Ich Lim, Young-Il Go, Kang-Seok Nho, Nam-Sun |
description | A volume of fluid computational fluid dynamics (VOF-CFD) model was used to investigate hydrodynamics of air-water bubble columns in the gas distributor region under bubbling, transient, and jetting flow regimes. The Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence equations were coupled with the VOF-CFisms@2015D model. A novel bubble detection algorithm was developed to calculate the bubble size, where a gas fraction of 0.5 was adopted to detect bubbles in the gas-liquid mixture. The CFD results for all three flow regimes were compared to the experimental data in terms of the bubble size distribution (BSD) and mean bubble size. In the framework of VOF, the LES turbulence model captured bubble behaviors in the three flow regimes more accurately than the RANS approach by taking computational time 20% more. Increasing the surface tension from 0.025 to 0.0719 N/m resulted in the increment of the Sauter mean diameter from 4.0 to 5.4 mm. The VOF-CFD model coupled with LES yielded the initial BSD near the gas distributor, which is necessary for Eulerian CFD often applied to an entire column.
[Display omitted]
•A VOF-CFD model was used to predict the initial bubble size in bubble columns.•A bubble detecting algorithm was proposed to identify the bubble size distribution.•The VOF-CFD model with large eddy simulation (LES) well captured bubble behaviors.•The VOF-CFD with LES providing the initial bubble size is beneficial to Eulerian CFD. |
doi_str_mv | 10.1016/j.cherd.2022.04.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723198759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876222001964</els_id><sourcerecordid>2723198759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-f9fd86ba1cad6fe459d0561add46cc5354c916ca3a730005e79f2fd33646aef13</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gZuAW1vzaNPpwoWILxDc6DpkkpsxpW3GJFXmZ_iPTR3durpw7j2Hez6EzigpKaHisiv1GwRTMsJYSaqScL6HFrSpqoLXgu-jBWGCF8tGsEN0FGNHCMnb5QJ9PWxN8GY7qsHpiL3FaxWL3r1PzuDVtFr1gLXvp2GMeBoNhJ3oxvUFTkGN0cGYLrAaDe4gpaxj2_tPHGDtBsieOEsfcwLM6bafg7UfNlNSyflR9b_a3w8n6MCqPsLp7zxGr3e3LzcPxdPz_ePN9VOhmaCpsK01S7FSVCsjLFR1a0gtqDKmElrXvK50S4VWXDU8t62haS2zhnNRCQWW8mN0vsvdBP8-QUyy81PI_0TJGsZpu2zqNl_x3ZUOPsYAVm6CG1TYSkrkzF528oe9nNlLUsnMPruudi7IBT4cBBl1BqXBuAA6SePdv_5vmIGRzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723198759</pqid></control><display><type>article</type><title>Hydrodynamics of gas-liquid bubble columns under bubbling, transient, and jetting flow regimes using volume of fluid computational fluid dynamics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nguyen, Loc Xuan ; Ngo, Son Ich ; Lim, Young-Il ; Go, Kang-Seok ; Nho, Nam-Sun</creator><creatorcontrib>Nguyen, Loc Xuan ; Ngo, Son Ich ; Lim, Young-Il ; Go, Kang-Seok ; Nho, Nam-Sun</creatorcontrib><description>A volume of fluid computational fluid dynamics (VOF-CFD) model was used to investigate hydrodynamics of air-water bubble columns in the gas distributor region under bubbling, transient, and jetting flow regimes. The Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence equations were coupled with the VOF-CFisms@2015D model. A novel bubble detection algorithm was developed to calculate the bubble size, where a gas fraction of 0.5 was adopted to detect bubbles in the gas-liquid mixture. The CFD results for all three flow regimes were compared to the experimental data in terms of the bubble size distribution (BSD) and mean bubble size. In the framework of VOF, the LES turbulence model captured bubble behaviors in the three flow regimes more accurately than the RANS approach by taking computational time 20% more. Increasing the surface tension from 0.025 to 0.0719 N/m resulted in the increment of the Sauter mean diameter from 4.0 to 5.4 mm. The VOF-CFD model coupled with LES yielded the initial BSD near the gas distributor, which is necessary for Eulerian CFD often applied to an entire column.
[Display omitted]
•A VOF-CFD model was used to predict the initial bubble size in bubble columns.•A bubble detecting algorithm was proposed to identify the bubble size distribution.•The VOF-CFD model with large eddy simulation (LES) well captured bubble behaviors.•The VOF-CFD with LES providing the initial bubble size is beneficial to Eulerian CFD.</description><identifier>ISSN: 0263-8762</identifier><identifier>EISSN: 1744-3563</identifier><identifier>DOI: 10.1016/j.cherd.2022.04.033</identifier><language>eng</language><publisher>Rugby: Elsevier Ltd</publisher><subject>Algorithms ; Bubble column ; Bubble columns ; Bubble detection algorithm ; Bubble size distribution (BSD) ; Bubbles ; Bubbling ; Computational fluid dynamics ; Computational fluid dynamics (CFD) ; Computing time ; Distributors ; Fluid dynamics ; Fluid flow ; Hydrodynamics ; Large eddy simulation ; Navier-Stokes equations ; Reynolds averaged Navier-Stokes method ; Sauter mean diameter ; Size distribution ; Surface tension ; Turbulence model ; Turbulence models ; Volume of fluid (VOF)</subject><ispartof>Chemical engineering research & design, 2022-06, Vol.182, p.616-628</ispartof><rights>2022 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-f9fd86ba1cad6fe459d0561add46cc5354c916ca3a730005e79f2fd33646aef13</citedby><cites>FETCH-LOGICAL-c261t-f9fd86ba1cad6fe459d0561add46cc5354c916ca3a730005e79f2fd33646aef13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cherd.2022.04.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nguyen, Loc Xuan</creatorcontrib><creatorcontrib>Ngo, Son Ich</creatorcontrib><creatorcontrib>Lim, Young-Il</creatorcontrib><creatorcontrib>Go, Kang-Seok</creatorcontrib><creatorcontrib>Nho, Nam-Sun</creatorcontrib><title>Hydrodynamics of gas-liquid bubble columns under bubbling, transient, and jetting flow regimes using volume of fluid computational fluid dynamics</title><title>Chemical engineering research & design</title><description>A volume of fluid computational fluid dynamics (VOF-CFD) model was used to investigate hydrodynamics of air-water bubble columns in the gas distributor region under bubbling, transient, and jetting flow regimes. The Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence equations were coupled with the VOF-CFisms@2015D model. A novel bubble detection algorithm was developed to calculate the bubble size, where a gas fraction of 0.5 was adopted to detect bubbles in the gas-liquid mixture. The CFD results for all three flow regimes were compared to the experimental data in terms of the bubble size distribution (BSD) and mean bubble size. In the framework of VOF, the LES turbulence model captured bubble behaviors in the three flow regimes more accurately than the RANS approach by taking computational time 20% more. Increasing the surface tension from 0.025 to 0.0719 N/m resulted in the increment of the Sauter mean diameter from 4.0 to 5.4 mm. The VOF-CFD model coupled with LES yielded the initial BSD near the gas distributor, which is necessary for Eulerian CFD often applied to an entire column.
[Display omitted]
•A VOF-CFD model was used to predict the initial bubble size in bubble columns.•A bubble detecting algorithm was proposed to identify the bubble size distribution.•The VOF-CFD model with large eddy simulation (LES) well captured bubble behaviors.•The VOF-CFD with LES providing the initial bubble size is beneficial to Eulerian CFD.</description><subject>Algorithms</subject><subject>Bubble column</subject><subject>Bubble columns</subject><subject>Bubble detection algorithm</subject><subject>Bubble size distribution (BSD)</subject><subject>Bubbles</subject><subject>Bubbling</subject><subject>Computational fluid dynamics</subject><subject>Computational fluid dynamics (CFD)</subject><subject>Computing time</subject><subject>Distributors</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Large eddy simulation</subject><subject>Navier-Stokes equations</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Sauter mean diameter</subject><subject>Size distribution</subject><subject>Surface tension</subject><subject>Turbulence model</subject><subject>Turbulence models</subject><subject>Volume of fluid (VOF)</subject><issn>0263-8762</issn><issn>1744-3563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gZuAW1vzaNPpwoWILxDc6DpkkpsxpW3GJFXmZ_iPTR3durpw7j2Hez6EzigpKaHisiv1GwRTMsJYSaqScL6HFrSpqoLXgu-jBWGCF8tGsEN0FGNHCMnb5QJ9PWxN8GY7qsHpiL3FaxWL3r1PzuDVtFr1gLXvp2GMeBoNhJ3oxvUFTkGN0cGYLrAaDe4gpaxj2_tPHGDtBsieOEsfcwLM6bafg7UfNlNSyflR9b_a3w8n6MCqPsLp7zxGr3e3LzcPxdPz_ePN9VOhmaCpsK01S7FSVCsjLFR1a0gtqDKmElrXvK50S4VWXDU8t62haS2zhnNRCQWW8mN0vsvdBP8-QUyy81PI_0TJGsZpu2zqNl_x3ZUOPsYAVm6CG1TYSkrkzF528oe9nNlLUsnMPruudi7IBT4cBBl1BqXBuAA6SePdv_5vmIGRzw</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Nguyen, Loc Xuan</creator><creator>Ngo, Son Ich</creator><creator>Lim, Young-Il</creator><creator>Go, Kang-Seok</creator><creator>Nho, Nam-Sun</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202206</creationdate><title>Hydrodynamics of gas-liquid bubble columns under bubbling, transient, and jetting flow regimes using volume of fluid computational fluid dynamics</title><author>Nguyen, Loc Xuan ; Ngo, Son Ich ; Lim, Young-Il ; Go, Kang-Seok ; Nho, Nam-Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-f9fd86ba1cad6fe459d0561add46cc5354c916ca3a730005e79f2fd33646aef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bubble column</topic><topic>Bubble columns</topic><topic>Bubble detection algorithm</topic><topic>Bubble size distribution (BSD)</topic><topic>Bubbles</topic><topic>Bubbling</topic><topic>Computational fluid dynamics</topic><topic>Computational fluid dynamics (CFD)</topic><topic>Computing time</topic><topic>Distributors</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Large eddy simulation</topic><topic>Navier-Stokes equations</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Sauter mean diameter</topic><topic>Size distribution</topic><topic>Surface tension</topic><topic>Turbulence model</topic><topic>Turbulence models</topic><topic>Volume of fluid (VOF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Loc Xuan</creatorcontrib><creatorcontrib>Ngo, Son Ich</creatorcontrib><creatorcontrib>Lim, Young-Il</creatorcontrib><creatorcontrib>Go, Kang-Seok</creatorcontrib><creatorcontrib>Nho, Nam-Sun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Loc Xuan</au><au>Ngo, Son Ich</au><au>Lim, Young-Il</au><au>Go, Kang-Seok</au><au>Nho, Nam-Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamics of gas-liquid bubble columns under bubbling, transient, and jetting flow regimes using volume of fluid computational fluid dynamics</atitle><jtitle>Chemical engineering research & design</jtitle><date>2022-06</date><risdate>2022</risdate><volume>182</volume><spage>616</spage><epage>628</epage><pages>616-628</pages><issn>0263-8762</issn><eissn>1744-3563</eissn><abstract>A volume of fluid computational fluid dynamics (VOF-CFD) model was used to investigate hydrodynamics of air-water bubble columns in the gas distributor region under bubbling, transient, and jetting flow regimes. The Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence equations were coupled with the VOF-CFisms@2015D model. A novel bubble detection algorithm was developed to calculate the bubble size, where a gas fraction of 0.5 was adopted to detect bubbles in the gas-liquid mixture. The CFD results for all three flow regimes were compared to the experimental data in terms of the bubble size distribution (BSD) and mean bubble size. In the framework of VOF, the LES turbulence model captured bubble behaviors in the three flow regimes more accurately than the RANS approach by taking computational time 20% more. Increasing the surface tension from 0.025 to 0.0719 N/m resulted in the increment of the Sauter mean diameter from 4.0 to 5.4 mm. The VOF-CFD model coupled with LES yielded the initial BSD near the gas distributor, which is necessary for Eulerian CFD often applied to an entire column.
[Display omitted]
•A VOF-CFD model was used to predict the initial bubble size in bubble columns.•A bubble detecting algorithm was proposed to identify the bubble size distribution.•The VOF-CFD model with large eddy simulation (LES) well captured bubble behaviors.•The VOF-CFD with LES providing the initial bubble size is beneficial to Eulerian CFD.</abstract><cop>Rugby</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cherd.2022.04.033</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8762 |
ispartof | Chemical engineering research & design, 2022-06, Vol.182, p.616-628 |
issn | 0263-8762 1744-3563 |
language | eng |
recordid | cdi_proquest_journals_2723198759 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Bubble column Bubble columns Bubble detection algorithm Bubble size distribution (BSD) Bubbles Bubbling Computational fluid dynamics Computational fluid dynamics (CFD) Computing time Distributors Fluid dynamics Fluid flow Hydrodynamics Large eddy simulation Navier-Stokes equations Reynolds averaged Navier-Stokes method Sauter mean diameter Size distribution Surface tension Turbulence model Turbulence models Volume of fluid (VOF) |
title | Hydrodynamics of gas-liquid bubble columns under bubbling, transient, and jetting flow regimes using volume of fluid computational fluid dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamics%20of%20gas-liquid%20bubble%20columns%20under%20bubbling,%20transient,%20and%20jetting%20flow%20regimes%20using%20volume%20of%20fluid%20computational%20fluid%20dynamics&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Nguyen,%20Loc%20Xuan&rft.date=2022-06&rft.volume=182&rft.spage=616&rft.epage=628&rft.pages=616-628&rft.issn=0263-8762&rft.eissn=1744-3563&rft_id=info:doi/10.1016/j.cherd.2022.04.033&rft_dat=%3Cproquest_cross%3E2723198759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723198759&rft_id=info:pmid/&rft_els_id=S0263876222001964&rfr_iscdi=true |