Stability of non-isothermal Poiseuille flow in a fluid overlying an anisotropic and inhomogeneous porous domain

A two-domain approach is used to investigate the thermal convection of Poiseuille flow in an anisotropic and inhomogeneous porous domain underlying a fluid domain. The flow of the Newtonian fluid is regulated by Darcy's law in the porous domain with the implementation of the Beavers–Joseph cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2022-10, Vol.949, Article A44
Hauptverfasser: Khan, Arshan, Bera, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 949
creator Khan, Arshan
Bera, P.
description A two-domain approach is used to investigate the thermal convection of Poiseuille flow in an anisotropic and inhomogeneous porous domain underlying a fluid domain. The flow of the Newtonian fluid is regulated by Darcy's law in the porous domain with the implementation of the Beavers–Joseph condition at the interface. The impact of medium anisotropy and inhomogeneity is inspected by virtue of linear stability analysis along with other governing parameters such as depth ratio (ratio of depth of fluid domain to porous domain), Darcy number, Reynolds number and Prandtl number concerning the stability of the fluid–porous system. The neutral curves are found to be bimodal and unimodal in nature with the anisotropy and inhomogeneity leaving its imprint on parametric variation. An increase in anisotropy or decrease in the inhomogeneity parameter follows the modal change from unimodal (porous) to bimodal (both porous and fluid). Also, it has been identified that, irrespective of the considered variations in anisotropy and inhomogeneity, the least stable mode for the depth ratio ${}0.16$ is fluid. Furthermore, energy budget analysis is carried out to classify the type of instability and validate the type of mode. The instability is found to be thermal–buoyant in nature with omission of low Reynolds numbers along with very low values of the ratio of permeability in the horizontal to vertical direction, where thermal–shear instability is witnessed. Likewise, secondary flow patterns in the context of the streamfunction and temperature contour are analysed to validate the least stable mode and the type of prevailing instability in the fluid–porous system. The presented numerical results find good experimental support from the results of Chen & Chen (J. Fluid Mech., vol. 207, 1989, pp. 311–321) in the limit of natural convection with an isotropic and homogeneous porous domain.
doi_str_mv 10.1017/jfm.2022.783
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2723142026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2022_783</cupid><sourcerecordid>2723142026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-9f8499a77b4b96e28e2f5e7d55f8b900b0fb66d6f7bbf8d9db5810c9f5e21a073</originalsourceid><addsrcrecordid>eNptkE1LxDAURYMoOI7u_AEBt7Ym6UeapQx-wYCCug5Jk8xkaJOatMr8e1NmwI2r97icdx8cAK4xyjHC9G5n-pwgQnLaFCdggcuaZbQuq1OwQCnOMCboHFzEuEMIF4jRBfDvo5C2s-MeegOdd5mNftzq0IsOvnkb9WS7TkPT-R9oHRRpm6yC_luHbm_dBooUuvko-MG2aVeJ2_reb7TTfopw8GEeyvfCuktwZkQX9dVxLsHn48PH6jlbvz69rO7XWVuUaMyYaUrGBKWylKzWpNHEVJqqqjKNZAhJZGRdq9pQKU2jmJJVg1HLEkSwQLRYgptD7xD816TjyHd-Ci695ISSApfJU52o2wPVBh9j0IYPwfYi7DlGfFbKk1I-K-VJacLzIy56Gaza6L_Wfw9-Adwreyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723142026</pqid></control><display><type>article</type><title>Stability of non-isothermal Poiseuille flow in a fluid overlying an anisotropic and inhomogeneous porous domain</title><source>Cambridge University Press Journals Complete</source><creator>Khan, Arshan ; Bera, P.</creator><creatorcontrib>Khan, Arshan ; Bera, P.</creatorcontrib><description>A two-domain approach is used to investigate the thermal convection of Poiseuille flow in an anisotropic and inhomogeneous porous domain underlying a fluid domain. The flow of the Newtonian fluid is regulated by Darcy's law in the porous domain with the implementation of the Beavers–Joseph condition at the interface. The impact of medium anisotropy and inhomogeneity is inspected by virtue of linear stability analysis along with other governing parameters such as depth ratio (ratio of depth of fluid domain to porous domain), Darcy number, Reynolds number and Prandtl number concerning the stability of the fluid–porous system. The neutral curves are found to be bimodal and unimodal in nature with the anisotropy and inhomogeneity leaving its imprint on parametric variation. An increase in anisotropy or decrease in the inhomogeneity parameter follows the modal change from unimodal (porous) to bimodal (both porous and fluid). Also, it has been identified that, irrespective of the considered variations in anisotropy and inhomogeneity, the least stable mode for the depth ratio ${&lt;}0.05$ is porous and for the depth ratio ${&gt;}0.16$ is fluid. Furthermore, energy budget analysis is carried out to classify the type of instability and validate the type of mode. The instability is found to be thermal–buoyant in nature with omission of low Reynolds numbers along with very low values of the ratio of permeability in the horizontal to vertical direction, where thermal–shear instability is witnessed. Likewise, secondary flow patterns in the context of the streamfunction and temperature contour are analysed to validate the least stable mode and the type of prevailing instability in the fluid–porous system. The presented numerical results find good experimental support from the results of Chen &amp; Chen (J. Fluid Mech., vol. 207, 1989, pp. 311–321) in the limit of natural convection with an isotropic and homogeneous porous domain.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2022.783</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Alloy solidification ; Anisotropy ; Aquatic mammals ; Aquatic reptiles ; Cellular convection ; Composite materials ; Convection ; Darcy number ; Darcys law ; Depth ; Domains ; Energy budget ; Flow distribution ; Flow pattern ; Flow stability ; Fluid flow ; Free convection ; Freshwater mammals ; Inhomogeneity ; Instability ; Isotherms ; JFM Papers ; Kelvin-Helmholtz instability ; Laminar flow ; Newtonian fluids ; Parameters ; Permeability ; Porous materials ; Prandtl number ; Ratios ; Rayleigh number ; Reynolds number ; Secondary flow ; Stability ; Stability analysis</subject><ispartof>Journal of fluid mechanics, 2022-10, Vol.949, Article A44</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press</rights><rights>The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-9f8499a77b4b96e28e2f5e7d55f8b900b0fb66d6f7bbf8d9db5810c9f5e21a073</citedby><cites>FETCH-LOGICAL-c340t-9f8499a77b4b96e28e2f5e7d55f8b900b0fb66d6f7bbf8d9db5810c9f5e21a073</cites><orcidid>0000-0001-9888-6193 ; 0000-0002-7802-6855 ; 0000-0002-9030-984X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112022007832/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Khan, Arshan</creatorcontrib><creatorcontrib>Bera, P.</creatorcontrib><title>Stability of non-isothermal Poiseuille flow in a fluid overlying an anisotropic and inhomogeneous porous domain</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A two-domain approach is used to investigate the thermal convection of Poiseuille flow in an anisotropic and inhomogeneous porous domain underlying a fluid domain. The flow of the Newtonian fluid is regulated by Darcy's law in the porous domain with the implementation of the Beavers–Joseph condition at the interface. The impact of medium anisotropy and inhomogeneity is inspected by virtue of linear stability analysis along with other governing parameters such as depth ratio (ratio of depth of fluid domain to porous domain), Darcy number, Reynolds number and Prandtl number concerning the stability of the fluid–porous system. The neutral curves are found to be bimodal and unimodal in nature with the anisotropy and inhomogeneity leaving its imprint on parametric variation. An increase in anisotropy or decrease in the inhomogeneity parameter follows the modal change from unimodal (porous) to bimodal (both porous and fluid). Also, it has been identified that, irrespective of the considered variations in anisotropy and inhomogeneity, the least stable mode for the depth ratio ${&lt;}0.05$ is porous and for the depth ratio ${&gt;}0.16$ is fluid. Furthermore, energy budget analysis is carried out to classify the type of instability and validate the type of mode. The instability is found to be thermal–buoyant in nature with omission of low Reynolds numbers along with very low values of the ratio of permeability in the horizontal to vertical direction, where thermal–shear instability is witnessed. Likewise, secondary flow patterns in the context of the streamfunction and temperature contour are analysed to validate the least stable mode and the type of prevailing instability in the fluid–porous system. The presented numerical results find good experimental support from the results of Chen &amp; Chen (J. Fluid Mech., vol. 207, 1989, pp. 311–321) in the limit of natural convection with an isotropic and homogeneous porous domain.</description><subject>Alloy solidification</subject><subject>Anisotropy</subject><subject>Aquatic mammals</subject><subject>Aquatic reptiles</subject><subject>Cellular convection</subject><subject>Composite materials</subject><subject>Convection</subject><subject>Darcy number</subject><subject>Darcys law</subject><subject>Depth</subject><subject>Domains</subject><subject>Energy budget</subject><subject>Flow distribution</subject><subject>Flow pattern</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Freshwater mammals</subject><subject>Inhomogeneity</subject><subject>Instability</subject><subject>Isotherms</subject><subject>JFM Papers</subject><subject>Kelvin-Helmholtz instability</subject><subject>Laminar flow</subject><subject>Newtonian fluids</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Porous materials</subject><subject>Prandtl number</subject><subject>Ratios</subject><subject>Rayleigh number</subject><subject>Reynolds number</subject><subject>Secondary flow</subject><subject>Stability</subject><subject>Stability analysis</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LxDAURYMoOI7u_AEBt7Ym6UeapQx-wYCCug5Jk8xkaJOatMr8e1NmwI2r97icdx8cAK4xyjHC9G5n-pwgQnLaFCdggcuaZbQuq1OwQCnOMCboHFzEuEMIF4jRBfDvo5C2s-MeegOdd5mNftzq0IsOvnkb9WS7TkPT-R9oHRRpm6yC_luHbm_dBooUuvko-MG2aVeJ2_reb7TTfopw8GEeyvfCuktwZkQX9dVxLsHn48PH6jlbvz69rO7XWVuUaMyYaUrGBKWylKzWpNHEVJqqqjKNZAhJZGRdq9pQKU2jmJJVg1HLEkSwQLRYgptD7xD816TjyHd-Ci695ISSApfJU52o2wPVBh9j0IYPwfYi7DlGfFbKk1I-K-VJacLzIy56Gaza6L_Wfw9-Adwreyk</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Khan, Arshan</creator><creator>Bera, P.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-9888-6193</orcidid><orcidid>https://orcid.org/0000-0002-7802-6855</orcidid><orcidid>https://orcid.org/0000-0002-9030-984X</orcidid></search><sort><creationdate>20221025</creationdate><title>Stability of non-isothermal Poiseuille flow in a fluid overlying an anisotropic and inhomogeneous porous domain</title><author>Khan, Arshan ; Bera, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-9f8499a77b4b96e28e2f5e7d55f8b900b0fb66d6f7bbf8d9db5810c9f5e21a073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloy solidification</topic><topic>Anisotropy</topic><topic>Aquatic mammals</topic><topic>Aquatic reptiles</topic><topic>Cellular convection</topic><topic>Composite materials</topic><topic>Convection</topic><topic>Darcy number</topic><topic>Darcys law</topic><topic>Depth</topic><topic>Domains</topic><topic>Energy budget</topic><topic>Flow distribution</topic><topic>Flow pattern</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Freshwater mammals</topic><topic>Inhomogeneity</topic><topic>Instability</topic><topic>Isotherms</topic><topic>JFM Papers</topic><topic>Kelvin-Helmholtz instability</topic><topic>Laminar flow</topic><topic>Newtonian fluids</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Porous materials</topic><topic>Prandtl number</topic><topic>Ratios</topic><topic>Rayleigh number</topic><topic>Reynolds number</topic><topic>Secondary flow</topic><topic>Stability</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Arshan</creatorcontrib><creatorcontrib>Bera, P.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Arshan</au><au>Bera, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of non-isothermal Poiseuille flow in a fluid overlying an anisotropic and inhomogeneous porous domain</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-10-25</date><risdate>2022</risdate><volume>949</volume><artnum>A44</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A two-domain approach is used to investigate the thermal convection of Poiseuille flow in an anisotropic and inhomogeneous porous domain underlying a fluid domain. The flow of the Newtonian fluid is regulated by Darcy's law in the porous domain with the implementation of the Beavers–Joseph condition at the interface. The impact of medium anisotropy and inhomogeneity is inspected by virtue of linear stability analysis along with other governing parameters such as depth ratio (ratio of depth of fluid domain to porous domain), Darcy number, Reynolds number and Prandtl number concerning the stability of the fluid–porous system. The neutral curves are found to be bimodal and unimodal in nature with the anisotropy and inhomogeneity leaving its imprint on parametric variation. An increase in anisotropy or decrease in the inhomogeneity parameter follows the modal change from unimodal (porous) to bimodal (both porous and fluid). Also, it has been identified that, irrespective of the considered variations in anisotropy and inhomogeneity, the least stable mode for the depth ratio ${&lt;}0.05$ is porous and for the depth ratio ${&gt;}0.16$ is fluid. Furthermore, energy budget analysis is carried out to classify the type of instability and validate the type of mode. The instability is found to be thermal–buoyant in nature with omission of low Reynolds numbers along with very low values of the ratio of permeability in the horizontal to vertical direction, where thermal–shear instability is witnessed. Likewise, secondary flow patterns in the context of the streamfunction and temperature contour are analysed to validate the least stable mode and the type of prevailing instability in the fluid–porous system. The presented numerical results find good experimental support from the results of Chen &amp; Chen (J. Fluid Mech., vol. 207, 1989, pp. 311–321) in the limit of natural convection with an isotropic and homogeneous porous domain.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2022.783</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-9888-6193</orcidid><orcidid>https://orcid.org/0000-0002-7802-6855</orcidid><orcidid>https://orcid.org/0000-0002-9030-984X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2022-10, Vol.949, Article A44
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2723142026
source Cambridge University Press Journals Complete
subjects Alloy solidification
Anisotropy
Aquatic mammals
Aquatic reptiles
Cellular convection
Composite materials
Convection
Darcy number
Darcys law
Depth
Domains
Energy budget
Flow distribution
Flow pattern
Flow stability
Fluid flow
Free convection
Freshwater mammals
Inhomogeneity
Instability
Isotherms
JFM Papers
Kelvin-Helmholtz instability
Laminar flow
Newtonian fluids
Parameters
Permeability
Porous materials
Prandtl number
Ratios
Rayleigh number
Reynolds number
Secondary flow
Stability
Stability analysis
title Stability of non-isothermal Poiseuille flow in a fluid overlying an anisotropic and inhomogeneous porous domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20non-isothermal%20Poiseuille%20flow%20in%20a%20fluid%20overlying%20an%20anisotropic%20and%20inhomogeneous%20porous%20domain&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Khan,%20Arshan&rft.date=2022-10-25&rft.volume=949&rft.artnum=A44&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2022.783&rft_dat=%3Cproquest_cross%3E2723142026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723142026&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2022_783&rfr_iscdi=true