Predictive control of particlesize distribution of crystallization process using deep learning based image analysis

The challenges to regulate the particle‐size distribution (PSD) stem from on‐line measurement of the full distribution and the distributed nature of crystallization process. In this article, a novel nonlinear model predictive control method of PSD for crystallization process is proposed. Radial basi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2022-11, Vol.68 (11), p.n/a
Hauptverfasser: Wang, Liangyong, Zhu, Yaolong, Gan, Chenyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title AIChE journal
container_volume 68
creator Wang, Liangyong
Zhu, Yaolong
Gan, Chenyang
description The challenges to regulate the particle‐size distribution (PSD) stem from on‐line measurement of the full distribution and the distributed nature of crystallization process. In this article, a novel nonlinear model predictive control method of PSD for crystallization process is proposed. Radial basis function neural network is adopted to approximate the PSD such that the population balance model with distributed nature can be transformed into the ordinary differential equation (ODE) models. Data driven nonlinear prediction model of the crystallization process is then constructed from the input and output data and further be used in the proposed nonlinear model predictive control algorithm. A deep learning based image analysis technology is developed for online measurement of the PSD. The proposed PSD control method is experimentally implemented on a jacketed batch crystallizer. The results of crystallization experiments demonstrate the effectiveness of the proposed control method.
doi_str_mv 10.1002/aic.17817
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2722980122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722980122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2277-149cfe9c131d92a1da1190dea1b3ecfdcb5a2a9244663bb5b78ca6a9f0f591293</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1naSJj5WFX9SJTjAOdo4m8qVSYI3AaVPj9tw5bSa2W9Xo2HsVoqFFEItwZqFzHKZnbGZTJMsSrVIz9lMCCGjYMhLdkW0D0pluZoxevNYWdPbb-SmbXrfOt7WvAPfW-OQ7AF5Zan3thx62zbHpfEj9eCcPcDJ6nxrkIgPZJsdrxA77hB8c1QlEFbcfsIOOTTgRrJ0zS5qcIQ3f3POPh4f3jfP0fb16WWz3kZGqSyLZKJNjdrIWFZagaxASi0qBFnGaOrKlCko0CpJVqu4LNMyyw2sQNeiTrVUOp6zu-lvCPg1IPXFvh18CEGFypTSeShBBep-ooxviTzWRedDXj8WUhTHTovQaXHqNLDLif2xDsf_wWL9spkufgHrsXtK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722980122</pqid></control><display><type>article</type><title>Predictive control of particlesize distribution of crystallization process using deep learning based image analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Liangyong ; Zhu, Yaolong ; Gan, Chenyang</creator><creatorcontrib>Wang, Liangyong ; Zhu, Yaolong ; Gan, Chenyang</creatorcontrib><description>The challenges to regulate the particle‐size distribution (PSD) stem from on‐line measurement of the full distribution and the distributed nature of crystallization process. In this article, a novel nonlinear model predictive control method of PSD for crystallization process is proposed. Radial basis function neural network is adopted to approximate the PSD such that the population balance model with distributed nature can be transformed into the ordinary differential equation (ODE) models. Data driven nonlinear prediction model of the crystallization process is then constructed from the input and output data and further be used in the proposed nonlinear model predictive control algorithm. A deep learning based image analysis technology is developed for online measurement of the PSD. The proposed PSD control method is experimentally implemented on a jacketed batch crystallizer. The results of crystallization experiments demonstrate the effectiveness of the proposed control method.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.17817</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Control methods ; Control theory ; Crystallization ; crystallization process ; Deep learning ; deep learning network ; Differential equations ; Image analysis ; Image processing ; Machine learning ; model predictive control ; Neural networks ; Nonlinear control ; particle‐size distribution ; Population balance models ; Prediction models ; Predictive control ; Radial basis function ; Size distribution ; Technology assessment</subject><ispartof>AIChE journal, 2022-11, Vol.68 (11), p.n/a</ispartof><rights>2022 American Institute of Chemical Engineers.</rights><rights>2022 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2277-149cfe9c131d92a1da1190dea1b3ecfdcb5a2a9244663bb5b78ca6a9f0f591293</citedby><cites>FETCH-LOGICAL-c2277-149cfe9c131d92a1da1190dea1b3ecfdcb5a2a9244663bb5b78ca6a9f0f591293</cites><orcidid>0000-0001-7811-5228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.17817$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.17817$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Liangyong</creatorcontrib><creatorcontrib>Zhu, Yaolong</creatorcontrib><creatorcontrib>Gan, Chenyang</creatorcontrib><title>Predictive control of particlesize distribution of crystallization process using deep learning based image analysis</title><title>AIChE journal</title><description>The challenges to regulate the particle‐size distribution (PSD) stem from on‐line measurement of the full distribution and the distributed nature of crystallization process. In this article, a novel nonlinear model predictive control method of PSD for crystallization process is proposed. Radial basis function neural network is adopted to approximate the PSD such that the population balance model with distributed nature can be transformed into the ordinary differential equation (ODE) models. Data driven nonlinear prediction model of the crystallization process is then constructed from the input and output data and further be used in the proposed nonlinear model predictive control algorithm. A deep learning based image analysis technology is developed for online measurement of the PSD. The proposed PSD control method is experimentally implemented on a jacketed batch crystallizer. The results of crystallization experiments demonstrate the effectiveness of the proposed control method.</description><subject>Algorithms</subject><subject>Control methods</subject><subject>Control theory</subject><subject>Crystallization</subject><subject>crystallization process</subject><subject>Deep learning</subject><subject>deep learning network</subject><subject>Differential equations</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>model predictive control</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>particle‐size distribution</subject><subject>Population balance models</subject><subject>Prediction models</subject><subject>Predictive control</subject><subject>Radial basis function</subject><subject>Size distribution</subject><subject>Technology assessment</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1naSJj5WFX9SJTjAOdo4m8qVSYI3AaVPj9tw5bSa2W9Xo2HsVoqFFEItwZqFzHKZnbGZTJMsSrVIz9lMCCGjYMhLdkW0D0pluZoxevNYWdPbb-SmbXrfOt7WvAPfW-OQ7AF5Zan3thx62zbHpfEj9eCcPcDJ6nxrkIgPZJsdrxA77hB8c1QlEFbcfsIOOTTgRrJ0zS5qcIQ3f3POPh4f3jfP0fb16WWz3kZGqSyLZKJNjdrIWFZagaxASi0qBFnGaOrKlCko0CpJVqu4LNMyyw2sQNeiTrVUOp6zu-lvCPg1IPXFvh18CEGFypTSeShBBep-ooxviTzWRedDXj8WUhTHTovQaXHqNLDLif2xDsf_wWL9spkufgHrsXtK</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Wang, Liangyong</creator><creator>Zhu, Yaolong</creator><creator>Gan, Chenyang</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7811-5228</orcidid></search><sort><creationdate>202211</creationdate><title>Predictive control of particlesize distribution of crystallization process using deep learning based image analysis</title><author>Wang, Liangyong ; Zhu, Yaolong ; Gan, Chenyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2277-149cfe9c131d92a1da1190dea1b3ecfdcb5a2a9244663bb5b78ca6a9f0f591293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Control methods</topic><topic>Control theory</topic><topic>Crystallization</topic><topic>crystallization process</topic><topic>Deep learning</topic><topic>deep learning network</topic><topic>Differential equations</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>model predictive control</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>particle‐size distribution</topic><topic>Population balance models</topic><topic>Prediction models</topic><topic>Predictive control</topic><topic>Radial basis function</topic><topic>Size distribution</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Liangyong</creatorcontrib><creatorcontrib>Zhu, Yaolong</creatorcontrib><creatorcontrib>Gan, Chenyang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Liangyong</au><au>Zhu, Yaolong</au><au>Gan, Chenyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive control of particlesize distribution of crystallization process using deep learning based image analysis</atitle><jtitle>AIChE journal</jtitle><date>2022-11</date><risdate>2022</risdate><volume>68</volume><issue>11</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>The challenges to regulate the particle‐size distribution (PSD) stem from on‐line measurement of the full distribution and the distributed nature of crystallization process. In this article, a novel nonlinear model predictive control method of PSD for crystallization process is proposed. Radial basis function neural network is adopted to approximate the PSD such that the population balance model with distributed nature can be transformed into the ordinary differential equation (ODE) models. Data driven nonlinear prediction model of the crystallization process is then constructed from the input and output data and further be used in the proposed nonlinear model predictive control algorithm. A deep learning based image analysis technology is developed for online measurement of the PSD. The proposed PSD control method is experimentally implemented on a jacketed batch crystallizer. The results of crystallization experiments demonstrate the effectiveness of the proposed control method.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.17817</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7811-5228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2022-11, Vol.68 (11), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2722980122
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Control methods
Control theory
Crystallization
crystallization process
Deep learning
deep learning network
Differential equations
Image analysis
Image processing
Machine learning
model predictive control
Neural networks
Nonlinear control
particle‐size distribution
Population balance models
Prediction models
Predictive control
Radial basis function
Size distribution
Technology assessment
title Predictive control of particlesize distribution of crystallization process using deep learning based image analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20control%20of%20particlesize%20distribution%20of%20crystallization%20process%20using%20deep%20learning%20based%20image%20analysis&rft.jtitle=AIChE%20journal&rft.au=Wang,%20Liangyong&rft.date=2022-11&rft.volume=68&rft.issue=11&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.17817&rft_dat=%3Cproquest_cross%3E2722980122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722980122&rft_id=info:pmid/&rfr_iscdi=true