Privacy-Preserving Task Distribution Mechanism with Cloud-Edge IoT for the Mobile Crowdsensing
Mobile crowdsensing under big data provides an efficient, win-win, and low-budget data collection solution for IoT applications such as the smart city. However, its open and all access scenarios raise the threat of data security and user privacy during task distribution of mobile crowdsensing. To el...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2022-09, Vol.2022, p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Security and communication networks |
container_volume | 2022 |
creator | Jiang, Liquan Qin, Zhiguang |
description | Mobile crowdsensing under big data provides an efficient, win-win, and low-budget data collection solution for IoT applications such as the smart city. However, its open and all access scenarios raise the threat of data security and user privacy during task distribution of mobile crowdsensing. To eliminate the above threat, this paper first designs a privacy-preserving task distribution scheme (Scheme 1), which realizes fine-grained access control and the practical keyword search, as well as protects the access policy. But it incurs expensive computational and communication consumptions for the task performer side. In this regard, we construct Scheme 2 to attain a lightweight trapdoor generation and keyword search mechanism, and it enables the crowdsensing platform to predecrypt a ciphertext without revealing any information about the task and the performer’s privacy. Then, the resource-constrained device on the task performer side can recover the task with a few computational and communication overheads. The security of the scheme has been detailedly proved and analyzed, and theoretical comparisons and experiment demonstrate their practicability. |
doi_str_mv | 10.1155/2022/6754744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2722973757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722973757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-f806cfc30055809ccaf1f0a4458f045f3a95724579b2632a26d2cca613bb35c63</originalsourceid><addsrcrecordid>eNp90E9PwjAYBvDGaCKiNz9AE4866d-VHs0EJYHIAa8uXdeyIqzYbhC-vSMQj57e9_DL8yQPAPcYPWPM-YAgQgap4EwwdgF6WFKZIEzI5d-P2TW4iXGFUIo71QNf8-B2Sh-SeTDRhJ2rl3Ch4jd8dbEJrmgb52s4M7pStYsbuHdNBbO1b8tkVC4NnPgFtD7ApjJw5gu3NjALfl9GU8cu6xZcWbWO5u58--BzPFpk78n0422SvUwTTSRrEjtEqbaaIsT5EEmtlcUWKcb40CLGLVWSC8K4kAVJKVEkLUmHUkyLgnKd0j54OOVug_9pTWzylW9D3VXmRBAiBRVcdOrppHTwMQZj821wGxUOOUb5ccH8uGB-XrDjjydeubpUe_e__gV0yW-H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722973757</pqid></control><display><type>article</type><title>Privacy-Preserving Task Distribution Mechanism with Cloud-Edge IoT for the Mobile Crowdsensing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Jiang, Liquan ; Qin, Zhiguang</creator><contributor>Xiong, Jinbo ; Jinbo Xiong</contributor><creatorcontrib>Jiang, Liquan ; Qin, Zhiguang ; Xiong, Jinbo ; Jinbo Xiong</creatorcontrib><description>Mobile crowdsensing under big data provides an efficient, win-win, and low-budget data collection solution for IoT applications such as the smart city. However, its open and all access scenarios raise the threat of data security and user privacy during task distribution of mobile crowdsensing. To eliminate the above threat, this paper first designs a privacy-preserving task distribution scheme (Scheme 1), which realizes fine-grained access control and the practical keyword search, as well as protects the access policy. But it incurs expensive computational and communication consumptions for the task performer side. In this regard, we construct Scheme 2 to attain a lightweight trapdoor generation and keyword search mechanism, and it enables the crowdsensing platform to predecrypt a ciphertext without revealing any information about the task and the performer’s privacy. Then, the resource-constrained device on the task performer side can recover the task with a few computational and communication overheads. The security of the scheme has been detailedly proved and analyzed, and theoretical comparisons and experiment demonstrate their practicability.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2022/6754744</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Access control ; Algorithms ; Big Data ; Cloud computing ; Cybersecurity ; Data collection ; Data encryption ; Design ; Efficiency ; Encryption ; Internet of Things ; Keywords ; Privacy ; Sensors ; Smart cities</subject><ispartof>Security and communication networks, 2022-09, Vol.2022, p.1-13</ispartof><rights>Copyright © 2022 Liquan Jiang and Zhiguang Qin.</rights><rights>Copyright © 2022 Liquan Jiang and Zhiguang Qin. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-f806cfc30055809ccaf1f0a4458f045f3a95724579b2632a26d2cca613bb35c63</cites><orcidid>0000-0002-6353-1576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Xiong, Jinbo</contributor><contributor>Jinbo Xiong</contributor><creatorcontrib>Jiang, Liquan</creatorcontrib><creatorcontrib>Qin, Zhiguang</creatorcontrib><title>Privacy-Preserving Task Distribution Mechanism with Cloud-Edge IoT for the Mobile Crowdsensing</title><title>Security and communication networks</title><description>Mobile crowdsensing under big data provides an efficient, win-win, and low-budget data collection solution for IoT applications such as the smart city. However, its open and all access scenarios raise the threat of data security and user privacy during task distribution of mobile crowdsensing. To eliminate the above threat, this paper first designs a privacy-preserving task distribution scheme (Scheme 1), which realizes fine-grained access control and the practical keyword search, as well as protects the access policy. But it incurs expensive computational and communication consumptions for the task performer side. In this regard, we construct Scheme 2 to attain a lightweight trapdoor generation and keyword search mechanism, and it enables the crowdsensing platform to predecrypt a ciphertext without revealing any information about the task and the performer’s privacy. Then, the resource-constrained device on the task performer side can recover the task with a few computational and communication overheads. The security of the scheme has been detailedly proved and analyzed, and theoretical comparisons and experiment demonstrate their practicability.</description><subject>Access control</subject><subject>Algorithms</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>Cybersecurity</subject><subject>Data collection</subject><subject>Data encryption</subject><subject>Design</subject><subject>Efficiency</subject><subject>Encryption</subject><subject>Internet of Things</subject><subject>Keywords</subject><subject>Privacy</subject><subject>Sensors</subject><subject>Smart cities</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90E9PwjAYBvDGaCKiNz9AE4866d-VHs0EJYHIAa8uXdeyIqzYbhC-vSMQj57e9_DL8yQPAPcYPWPM-YAgQgap4EwwdgF6WFKZIEzI5d-P2TW4iXGFUIo71QNf8-B2Sh-SeTDRhJ2rl3Ch4jd8dbEJrmgb52s4M7pStYsbuHdNBbO1b8tkVC4NnPgFtD7ApjJw5gu3NjALfl9GU8cu6xZcWbWO5u58--BzPFpk78n0422SvUwTTSRrEjtEqbaaIsT5EEmtlcUWKcb40CLGLVWSC8K4kAVJKVEkLUmHUkyLgnKd0j54OOVug_9pTWzylW9D3VXmRBAiBRVcdOrppHTwMQZj821wGxUOOUb5ccH8uGB-XrDjjydeubpUe_e__gV0yW-H</recordid><startdate>20220926</startdate><enddate>20220926</enddate><creator>Jiang, Liquan</creator><creator>Qin, Zhiguang</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6353-1576</orcidid></search><sort><creationdate>20220926</creationdate><title>Privacy-Preserving Task Distribution Mechanism with Cloud-Edge IoT for the Mobile Crowdsensing</title><author>Jiang, Liquan ; Qin, Zhiguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-f806cfc30055809ccaf1f0a4458f045f3a95724579b2632a26d2cca613bb35c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>Cybersecurity</topic><topic>Data collection</topic><topic>Data encryption</topic><topic>Design</topic><topic>Efficiency</topic><topic>Encryption</topic><topic>Internet of Things</topic><topic>Keywords</topic><topic>Privacy</topic><topic>Sensors</topic><topic>Smart cities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Liquan</creatorcontrib><creatorcontrib>Qin, Zhiguang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Liquan</au><au>Qin, Zhiguang</au><au>Xiong, Jinbo</au><au>Jinbo Xiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy-Preserving Task Distribution Mechanism with Cloud-Edge IoT for the Mobile Crowdsensing</atitle><jtitle>Security and communication networks</jtitle><date>2022-09-26</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Mobile crowdsensing under big data provides an efficient, win-win, and low-budget data collection solution for IoT applications such as the smart city. However, its open and all access scenarios raise the threat of data security and user privacy during task distribution of mobile crowdsensing. To eliminate the above threat, this paper first designs a privacy-preserving task distribution scheme (Scheme 1), which realizes fine-grained access control and the practical keyword search, as well as protects the access policy. But it incurs expensive computational and communication consumptions for the task performer side. In this regard, we construct Scheme 2 to attain a lightweight trapdoor generation and keyword search mechanism, and it enables the crowdsensing platform to predecrypt a ciphertext without revealing any information about the task and the performer’s privacy. Then, the resource-constrained device on the task performer side can recover the task with a few computational and communication overheads. The security of the scheme has been detailedly proved and analyzed, and theoretical comparisons and experiment demonstrate their practicability.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2022/6754744</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6353-1576</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-0114 |
ispartof | Security and communication networks, 2022-09, Vol.2022, p.1-13 |
issn | 1939-0114 1939-0122 |
language | eng |
recordid | cdi_proquest_journals_2722973757 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Access control Algorithms Big Data Cloud computing Cybersecurity Data collection Data encryption Design Efficiency Encryption Internet of Things Keywords Privacy Sensors Smart cities |
title | Privacy-Preserving Task Distribution Mechanism with Cloud-Edge IoT for the Mobile Crowdsensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy-Preserving%20Task%20Distribution%20Mechanism%20with%20Cloud-Edge%20IoT%20for%20the%20Mobile%20Crowdsensing&rft.jtitle=Security%20and%20communication%20networks&rft.au=Jiang,%20Liquan&rft.date=2022-09-26&rft.volume=2022&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2022/6754744&rft_dat=%3Cproquest_cross%3E2722973757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722973757&rft_id=info:pmid/&rfr_iscdi=true |