Privacy-Preserving Task Distribution Mechanism with Cloud-Edge IoT for the Mobile Crowdsensing

Mobile crowdsensing under big data provides an efficient, win-win, and low-budget data collection solution for IoT applications such as the smart city. However, its open and all access scenarios raise the threat of data security and user privacy during task distribution of mobile crowdsensing. To el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2022-09, Vol.2022, p.1-13
Hauptverfasser: Jiang, Liquan, Qin, Zhiguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title Security and communication networks
container_volume 2022
creator Jiang, Liquan
Qin, Zhiguang
description Mobile crowdsensing under big data provides an efficient, win-win, and low-budget data collection solution for IoT applications such as the smart city. However, its open and all access scenarios raise the threat of data security and user privacy during task distribution of mobile crowdsensing. To eliminate the above threat, this paper first designs a privacy-preserving task distribution scheme (Scheme 1), which realizes fine-grained access control and the practical keyword search, as well as protects the access policy. But it incurs expensive computational and communication consumptions for the task performer side. In this regard, we construct Scheme 2 to attain a lightweight trapdoor generation and keyword search mechanism, and it enables the crowdsensing platform to predecrypt a ciphertext without revealing any information about the task and the performer’s privacy. Then, the resource-constrained device on the task performer side can recover the task with a few computational and communication overheads. The security of the scheme has been detailedly proved and analyzed, and theoretical comparisons and experiment demonstrate their practicability.
doi_str_mv 10.1155/2022/6754744
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2722973757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722973757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-f806cfc30055809ccaf1f0a4458f045f3a95724579b2632a26d2cca613bb35c63</originalsourceid><addsrcrecordid>eNp90E9PwjAYBvDGaCKiNz9AE4866d-VHs0EJYHIAa8uXdeyIqzYbhC-vSMQj57e9_DL8yQPAPcYPWPM-YAgQgap4EwwdgF6WFKZIEzI5d-P2TW4iXGFUIo71QNf8-B2Sh-SeTDRhJ2rl3Ch4jd8dbEJrmgb52s4M7pStYsbuHdNBbO1b8tkVC4NnPgFtD7ApjJw5gu3NjALfl9GU8cu6xZcWbWO5u58--BzPFpk78n0422SvUwTTSRrEjtEqbaaIsT5EEmtlcUWKcb40CLGLVWSC8K4kAVJKVEkLUmHUkyLgnKd0j54OOVug_9pTWzylW9D3VXmRBAiBRVcdOrppHTwMQZj821wGxUOOUb5ccH8uGB-XrDjjydeubpUe_e__gV0yW-H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722973757</pqid></control><display><type>article</type><title>Privacy-Preserving Task Distribution Mechanism with Cloud-Edge IoT for the Mobile Crowdsensing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Jiang, Liquan ; Qin, Zhiguang</creator><contributor>Xiong, Jinbo ; Jinbo Xiong</contributor><creatorcontrib>Jiang, Liquan ; Qin, Zhiguang ; Xiong, Jinbo ; Jinbo Xiong</creatorcontrib><description>Mobile crowdsensing under big data provides an efficient, win-win, and low-budget data collection solution for IoT applications such as the smart city. However, its open and all access scenarios raise the threat of data security and user privacy during task distribution of mobile crowdsensing. To eliminate the above threat, this paper first designs a privacy-preserving task distribution scheme (Scheme 1), which realizes fine-grained access control and the practical keyword search, as well as protects the access policy. But it incurs expensive computational and communication consumptions for the task performer side. In this regard, we construct Scheme 2 to attain a lightweight trapdoor generation and keyword search mechanism, and it enables the crowdsensing platform to predecrypt a ciphertext without revealing any information about the task and the performer’s privacy. Then, the resource-constrained device on the task performer side can recover the task with a few computational and communication overheads. The security of the scheme has been detailedly proved and analyzed, and theoretical comparisons and experiment demonstrate their practicability.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2022/6754744</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Access control ; Algorithms ; Big Data ; Cloud computing ; Cybersecurity ; Data collection ; Data encryption ; Design ; Efficiency ; Encryption ; Internet of Things ; Keywords ; Privacy ; Sensors ; Smart cities</subject><ispartof>Security and communication networks, 2022-09, Vol.2022, p.1-13</ispartof><rights>Copyright © 2022 Liquan Jiang and Zhiguang Qin.</rights><rights>Copyright © 2022 Liquan Jiang and Zhiguang Qin. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-f806cfc30055809ccaf1f0a4458f045f3a95724579b2632a26d2cca613bb35c63</cites><orcidid>0000-0002-6353-1576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Xiong, Jinbo</contributor><contributor>Jinbo Xiong</contributor><creatorcontrib>Jiang, Liquan</creatorcontrib><creatorcontrib>Qin, Zhiguang</creatorcontrib><title>Privacy-Preserving Task Distribution Mechanism with Cloud-Edge IoT for the Mobile Crowdsensing</title><title>Security and communication networks</title><description>Mobile crowdsensing under big data provides an efficient, win-win, and low-budget data collection solution for IoT applications such as the smart city. However, its open and all access scenarios raise the threat of data security and user privacy during task distribution of mobile crowdsensing. To eliminate the above threat, this paper first designs a privacy-preserving task distribution scheme (Scheme 1), which realizes fine-grained access control and the practical keyword search, as well as protects the access policy. But it incurs expensive computational and communication consumptions for the task performer side. In this regard, we construct Scheme 2 to attain a lightweight trapdoor generation and keyword search mechanism, and it enables the crowdsensing platform to predecrypt a ciphertext without revealing any information about the task and the performer’s privacy. Then, the resource-constrained device on the task performer side can recover the task with a few computational and communication overheads. The security of the scheme has been detailedly proved and analyzed, and theoretical comparisons and experiment demonstrate their practicability.</description><subject>Access control</subject><subject>Algorithms</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>Cybersecurity</subject><subject>Data collection</subject><subject>Data encryption</subject><subject>Design</subject><subject>Efficiency</subject><subject>Encryption</subject><subject>Internet of Things</subject><subject>Keywords</subject><subject>Privacy</subject><subject>Sensors</subject><subject>Smart cities</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90E9PwjAYBvDGaCKiNz9AE4866d-VHs0EJYHIAa8uXdeyIqzYbhC-vSMQj57e9_DL8yQPAPcYPWPM-YAgQgap4EwwdgF6WFKZIEzI5d-P2TW4iXGFUIo71QNf8-B2Sh-SeTDRhJ2rl3Ch4jd8dbEJrmgb52s4M7pStYsbuHdNBbO1b8tkVC4NnPgFtD7ApjJw5gu3NjALfl9GU8cu6xZcWbWO5u58--BzPFpk78n0422SvUwTTSRrEjtEqbaaIsT5EEmtlcUWKcb40CLGLVWSC8K4kAVJKVEkLUmHUkyLgnKd0j54OOVug_9pTWzylW9D3VXmRBAiBRVcdOrppHTwMQZj821wGxUOOUb5ccH8uGB-XrDjjydeubpUe_e__gV0yW-H</recordid><startdate>20220926</startdate><enddate>20220926</enddate><creator>Jiang, Liquan</creator><creator>Qin, Zhiguang</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6353-1576</orcidid></search><sort><creationdate>20220926</creationdate><title>Privacy-Preserving Task Distribution Mechanism with Cloud-Edge IoT for the Mobile Crowdsensing</title><author>Jiang, Liquan ; Qin, Zhiguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-f806cfc30055809ccaf1f0a4458f045f3a95724579b2632a26d2cca613bb35c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>Cybersecurity</topic><topic>Data collection</topic><topic>Data encryption</topic><topic>Design</topic><topic>Efficiency</topic><topic>Encryption</topic><topic>Internet of Things</topic><topic>Keywords</topic><topic>Privacy</topic><topic>Sensors</topic><topic>Smart cities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Liquan</creatorcontrib><creatorcontrib>Qin, Zhiguang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Liquan</au><au>Qin, Zhiguang</au><au>Xiong, Jinbo</au><au>Jinbo Xiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy-Preserving Task Distribution Mechanism with Cloud-Edge IoT for the Mobile Crowdsensing</atitle><jtitle>Security and communication networks</jtitle><date>2022-09-26</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Mobile crowdsensing under big data provides an efficient, win-win, and low-budget data collection solution for IoT applications such as the smart city. However, its open and all access scenarios raise the threat of data security and user privacy during task distribution of mobile crowdsensing. To eliminate the above threat, this paper first designs a privacy-preserving task distribution scheme (Scheme 1), which realizes fine-grained access control and the practical keyword search, as well as protects the access policy. But it incurs expensive computational and communication consumptions for the task performer side. In this regard, we construct Scheme 2 to attain a lightweight trapdoor generation and keyword search mechanism, and it enables the crowdsensing platform to predecrypt a ciphertext without revealing any information about the task and the performer’s privacy. Then, the resource-constrained device on the task performer side can recover the task with a few computational and communication overheads. The security of the scheme has been detailedly proved and analyzed, and theoretical comparisons and experiment demonstrate their practicability.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2022/6754744</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6353-1576</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2022-09, Vol.2022, p.1-13
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2722973757
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Access control
Algorithms
Big Data
Cloud computing
Cybersecurity
Data collection
Data encryption
Design
Efficiency
Encryption
Internet of Things
Keywords
Privacy
Sensors
Smart cities
title Privacy-Preserving Task Distribution Mechanism with Cloud-Edge IoT for the Mobile Crowdsensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy-Preserving%20Task%20Distribution%20Mechanism%20with%20Cloud-Edge%20IoT%20for%20the%20Mobile%20Crowdsensing&rft.jtitle=Security%20and%20communication%20networks&rft.au=Jiang,%20Liquan&rft.date=2022-09-26&rft.volume=2022&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2022/6754744&rft_dat=%3Cproquest_cross%3E2722973757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722973757&rft_id=info:pmid/&rfr_iscdi=true