Wavelet-Hilbert transform-based simulation of pulse-like ground motion
In nonlinear dynamic structural analysis, a suite of pulse-like ground motions is required for the performance-based design of structures near active faults. The dissimilarity in the amplitude and frequency content of the earthquake time series referred to nonstationary properties in temporal and sp...
Gespeichert in:
Veröffentlicht in: | Journal of seismology 2022-10, Vol.26 (5), p.949-965 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 965 |
---|---|
container_issue | 5 |
container_start_page | 949 |
container_title | Journal of seismology |
container_volume | 26 |
creator | Yazdani, Azad Salimi, Mohammad-Rashid Roshan-Miavagi, Ali |
description | In nonlinear dynamic structural analysis, a suite of pulse-like ground motions is required for the performance-based design of structures near active faults. The dissimilarity in the amplitude and frequency content of the earthquake time series referred to nonstationary properties in temporal and spectral, respectively. An approach is proposed based on the nonstationary properties of the far-field records and the seismological information in an event for simulating pulse-like records. The pulse-like earthquake time history is estimated via the superposition of the residual part of the earthquake with the estimated pulse. The wavelet-based Hilbert transform is utilized to characterize the nonstationary properties, the instantaneous amplitude, and frequencies of far-field records to model residual part. The effects of near-fault and pulse are estimated based on the seismological properties of the region. The validation of the procedure is indicated by comparing simulated time-series, response spectra, and Arias intensity with recorded pulse-like records in two different earthquakes in California; the
M
w
6.7 1994 Northridge and the
M
w
6.5 1979 Imperial valley. |
doi_str_mv | 10.1007/s10950-022-10100-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2722747360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722747360</sourcerecordid><originalsourceid>FETCH-LOGICAL-a272t-e8d1688ac8d0ad9fd39e76f246240fb106ded2684d218b53674c8819c63aabdb3</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrf4BTwueo5NHk-xRirWFghdFbyG7ScrW3U1NdgX_vakrePMyM8z3gg-hawK3BEDeJQLlAjBQignkD4YTNCMLyXAeb6f5ZophLnh5ji5S2gNAqUo2Q6tX8-laN-B101YuDsUQTZ98iB2uTHK2SE03tmZoQl8EXxzGNjncNu-u2MUw9rbowhG7RGfeZOjqd8_Ry-rhebnG26fHzfJ-iw2VdMBOWSKUMrWyYGzpLSudFJ5yQTn4ioCwzlKhuKVEVQsmJK-VImUtmDGVrdgc3Uy-hxg-RpcGvQ9j7HOkzgFUcskEZBadWHUMKUXn9SE2nYlfmoA-9qWnvnTuS__0pY8iNolSJvc7F_-s_1F9A7Xobdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722747360</pqid></control><display><type>article</type><title>Wavelet-Hilbert transform-based simulation of pulse-like ground motion</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yazdani, Azad ; Salimi, Mohammad-Rashid ; Roshan-Miavagi, Ali</creator><creatorcontrib>Yazdani, Azad ; Salimi, Mohammad-Rashid ; Roshan-Miavagi, Ali</creatorcontrib><description>In nonlinear dynamic structural analysis, a suite of pulse-like ground motions is required for the performance-based design of structures near active faults. The dissimilarity in the amplitude and frequency content of the earthquake time series referred to nonstationary properties in temporal and spectral, respectively. An approach is proposed based on the nonstationary properties of the far-field records and the seismological information in an event for simulating pulse-like records. The pulse-like earthquake time history is estimated via the superposition of the residual part of the earthquake with the estimated pulse. The wavelet-based Hilbert transform is utilized to characterize the nonstationary properties, the instantaneous amplitude, and frequencies of far-field records to model residual part. The effects of near-fault and pulse are estimated based on the seismological properties of the region. The validation of the procedure is indicated by comparing simulated time-series, response spectra, and Arias intensity with recorded pulse-like records in two different earthquakes in California; the
M
w
6.7 1994 Northridge and the
M
w
6.5 1979 Imperial valley.</description><identifier>ISSN: 1383-4649</identifier><identifier>EISSN: 1573-157X</identifier><identifier>DOI: 10.1007/s10950-022-10100-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amplitude ; Amplitudes ; Dynamic structural analysis ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Ground motion ; Hilbert transformation ; Hydrogeology ; Nonlinear dynamics ; Original Article ; Properties ; Records ; Response spectra ; Seismic activity ; Seismology ; Simulation ; Structural analysis ; Structural Geology ; Time series</subject><ispartof>Journal of seismology, 2022-10, Vol.26 (5), p.949-965</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a272t-e8d1688ac8d0ad9fd39e76f246240fb106ded2684d218b53674c8819c63aabdb3</citedby><cites>FETCH-LOGICAL-a272t-e8d1688ac8d0ad9fd39e76f246240fb106ded2684d218b53674c8819c63aabdb3</cites><orcidid>0000-0002-4520-5304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10950-022-10100-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10950-022-10100-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yazdani, Azad</creatorcontrib><creatorcontrib>Salimi, Mohammad-Rashid</creatorcontrib><creatorcontrib>Roshan-Miavagi, Ali</creatorcontrib><title>Wavelet-Hilbert transform-based simulation of pulse-like ground motion</title><title>Journal of seismology</title><addtitle>J Seismol</addtitle><description>In nonlinear dynamic structural analysis, a suite of pulse-like ground motions is required for the performance-based design of structures near active faults. The dissimilarity in the amplitude and frequency content of the earthquake time series referred to nonstationary properties in temporal and spectral, respectively. An approach is proposed based on the nonstationary properties of the far-field records and the seismological information in an event for simulating pulse-like records. The pulse-like earthquake time history is estimated via the superposition of the residual part of the earthquake with the estimated pulse. The wavelet-based Hilbert transform is utilized to characterize the nonstationary properties, the instantaneous amplitude, and frequencies of far-field records to model residual part. The effects of near-fault and pulse are estimated based on the seismological properties of the region. The validation of the procedure is indicated by comparing simulated time-series, response spectra, and Arias intensity with recorded pulse-like records in two different earthquakes in California; the
M
w
6.7 1994 Northridge and the
M
w
6.5 1979 Imperial valley.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Dynamic structural analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Hilbert transformation</subject><subject>Hydrogeology</subject><subject>Nonlinear dynamics</subject><subject>Original Article</subject><subject>Properties</subject><subject>Records</subject><subject>Response spectra</subject><subject>Seismic activity</subject><subject>Seismology</subject><subject>Simulation</subject><subject>Structural analysis</subject><subject>Structural Geology</subject><subject>Time series</subject><issn>1383-4649</issn><issn>1573-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UEtLAzEQDqJgrf4BTwueo5NHk-xRirWFghdFbyG7ScrW3U1NdgX_vakrePMyM8z3gg-hawK3BEDeJQLlAjBQignkD4YTNCMLyXAeb6f5ZophLnh5ji5S2gNAqUo2Q6tX8-laN-B101YuDsUQTZ98iB2uTHK2SE03tmZoQl8EXxzGNjncNu-u2MUw9rbowhG7RGfeZOjqd8_Ry-rhebnG26fHzfJ-iw2VdMBOWSKUMrWyYGzpLSudFJ5yQTn4ioCwzlKhuKVEVQsmJK-VImUtmDGVrdgc3Uy-hxg-RpcGvQ9j7HOkzgFUcskEZBadWHUMKUXn9SE2nYlfmoA-9qWnvnTuS__0pY8iNolSJvc7F_-s_1F9A7Xobdw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Yazdani, Azad</creator><creator>Salimi, Mohammad-Rashid</creator><creator>Roshan-Miavagi, Ali</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4520-5304</orcidid></search><sort><creationdate>20221001</creationdate><title>Wavelet-Hilbert transform-based simulation of pulse-like ground motion</title><author>Yazdani, Azad ; Salimi, Mohammad-Rashid ; Roshan-Miavagi, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a272t-e8d1688ac8d0ad9fd39e76f246240fb106ded2684d218b53674c8819c63aabdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Dynamic structural analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Hilbert transformation</topic><topic>Hydrogeology</topic><topic>Nonlinear dynamics</topic><topic>Original Article</topic><topic>Properties</topic><topic>Records</topic><topic>Response spectra</topic><topic>Seismic activity</topic><topic>Seismology</topic><topic>Simulation</topic><topic>Structural analysis</topic><topic>Structural Geology</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazdani, Azad</creatorcontrib><creatorcontrib>Salimi, Mohammad-Rashid</creatorcontrib><creatorcontrib>Roshan-Miavagi, Ali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of seismology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazdani, Azad</au><au>Salimi, Mohammad-Rashid</au><au>Roshan-Miavagi, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet-Hilbert transform-based simulation of pulse-like ground motion</atitle><jtitle>Journal of seismology</jtitle><stitle>J Seismol</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>26</volume><issue>5</issue><spage>949</spage><epage>965</epage><pages>949-965</pages><issn>1383-4649</issn><eissn>1573-157X</eissn><abstract>In nonlinear dynamic structural analysis, a suite of pulse-like ground motions is required for the performance-based design of structures near active faults. The dissimilarity in the amplitude and frequency content of the earthquake time series referred to nonstationary properties in temporal and spectral, respectively. An approach is proposed based on the nonstationary properties of the far-field records and the seismological information in an event for simulating pulse-like records. The pulse-like earthquake time history is estimated via the superposition of the residual part of the earthquake with the estimated pulse. The wavelet-based Hilbert transform is utilized to characterize the nonstationary properties, the instantaneous amplitude, and frequencies of far-field records to model residual part. The effects of near-fault and pulse are estimated based on the seismological properties of the region. The validation of the procedure is indicated by comparing simulated time-series, response spectra, and Arias intensity with recorded pulse-like records in two different earthquakes in California; the
M
w
6.7 1994 Northridge and the
M
w
6.5 1979 Imperial valley.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10950-022-10100-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4520-5304</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-4649 |
ispartof | Journal of seismology, 2022-10, Vol.26 (5), p.949-965 |
issn | 1383-4649 1573-157X |
language | eng |
recordid | cdi_proquest_journals_2722747360 |
source | SpringerLink Journals - AutoHoldings |
subjects | Amplitude Amplitudes Dynamic structural analysis Earth and Environmental Science Earth Sciences Earthquakes Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Ground motion Hilbert transformation Hydrogeology Nonlinear dynamics Original Article Properties Records Response spectra Seismic activity Seismology Simulation Structural analysis Structural Geology Time series |
title | Wavelet-Hilbert transform-based simulation of pulse-like ground motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet-Hilbert%20transform-based%20simulation%20of%20pulse-like%20ground%20motion&rft.jtitle=Journal%20of%20seismology&rft.au=Yazdani,%20Azad&rft.date=2022-10-01&rft.volume=26&rft.issue=5&rft.spage=949&rft.epage=965&rft.pages=949-965&rft.issn=1383-4649&rft.eissn=1573-157X&rft_id=info:doi/10.1007/s10950-022-10100-0&rft_dat=%3Cproquest_cross%3E2722747360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722747360&rft_id=info:pmid/&rfr_iscdi=true |