Brand Identification of Soybean Milk Powder based on Raman Spectroscopy Combined with Random Forest Algorithm

Raman spectroscopy can characterize the rich molecular vibration information of soybean milk powder samples, but difficulties arise in its direct use for sample classification and identification. Therefore, it is urgent to develop an intelligent identification technology based on Raman spectroscopy....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of analytical chemistry (New York, N.Y.) N.Y.), 2022-10, Vol.77 (10), p.1282-1286
Hauptverfasser: Zhang, Zheng-Yong, Shi, Xiao-Jing, Zhao, Ya-Ju, Zhang, Yin-Sheng, Wang, Hai-Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1286
container_issue 10
container_start_page 1282
container_title Journal of analytical chemistry (New York, N.Y.)
container_volume 77
creator Zhang, Zheng-Yong
Shi, Xiao-Jing
Zhao, Ya-Ju
Zhang, Yin-Sheng
Wang, Hai-Yan
description Raman spectroscopy can characterize the rich molecular vibration information of soybean milk powder samples, but difficulties arise in its direct use for sample classification and identification. Therefore, it is urgent to develop an intelligent identification technology based on Raman spectroscopy. For brand identification of soybean milk powder, this work investigates and discusses a variety of spectral processing technologies including wavelet denoising, normalization, principal component analysis, and the results show that appropriate spectral processing can improve the recognition accuracy of the random forest algorithm. Under the optimal conditions (db2 wavelet, normalization, principal component analysis, 30 decision trees), the best recognition effect of soybean milk brand identification can be achieved. The Raman spectral signal acquisition time of each sample is 40 s, and the spectra pretreatment and identification operation time only takes a few minutes. The analytical approach established in this paper has the advantages of convenient and fast Raman spectra acquisition, fast and accurate model identification.
doi_str_mv 10.1134/S1061934822100173
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2722727470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A721542329</galeid><sourcerecordid>A721542329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-7482fb9e861917492861aaf57ba0de027692abf797cd7ad68d69be7cfbafd2273</originalsourceid><addsrcrecordid>eNp1ksFuEzEQhlcIJErhAbhZ4sRhi-3drNfHEFEaqQjUtGfLa48Xl1072I5K3r5TBamKCPLBo_m_f-wZTVW9Z_SCsab9tGG0Y7Jpe84ZpUw0L6oz1tG-bpiULzFGuX7SX1dvcr6nlMqedWfV_DnpYMnaQijeeaOLj4FERzZxP4AO5JuffpEf8cFCIoPOYAnqN3pGabMFU1LMJm73ZBXnwQeUH3z5iUCwcSaXMUEuZDmNMWF6flu9cnrK8O7vfV7dXX65XV3V19-_rlfL69q0i0WpBbbhBgk9tsREKzkGWruFGDS1QLnoJNeDE1IYK7TtetvJAYRxg3aWc9GcVx8Odbcp_t7hF9R93KWATyouEOCiFfSZGvUEygcXS9Jm9tmopeBs0fKGS6TqE9QIAZKeYgDnMX3EX5zg8ViYvTlp-HhkQKbAnzLqXc5qvbk5ZtmBNTj3nMCpbfKzTnvFqHpaBPXPIqCHHzwZ2TBCeh7G_02PaCWyLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722727470</pqid></control><display><type>article</type><title>Brand Identification of Soybean Milk Powder based on Raman Spectroscopy Combined with Random Forest Algorithm</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Zheng-Yong ; Shi, Xiao-Jing ; Zhao, Ya-Ju ; Zhang, Yin-Sheng ; Wang, Hai-Yan</creator><creatorcontrib>Zhang, Zheng-Yong ; Shi, Xiao-Jing ; Zhao, Ya-Ju ; Zhang, Yin-Sheng ; Wang, Hai-Yan</creatorcontrib><description>Raman spectroscopy can characterize the rich molecular vibration information of soybean milk powder samples, but difficulties arise in its direct use for sample classification and identification. Therefore, it is urgent to develop an intelligent identification technology based on Raman spectroscopy. For brand identification of soybean milk powder, this work investigates and discusses a variety of spectral processing technologies including wavelet denoising, normalization, principal component analysis, and the results show that appropriate spectral processing can improve the recognition accuracy of the random forest algorithm. Under the optimal conditions (db2 wavelet, normalization, principal component analysis, 30 decision trees), the best recognition effect of soybean milk brand identification can be achieved. The Raman spectral signal acquisition time of each sample is 40 s, and the spectra pretreatment and identification operation time only takes a few minutes. The analytical approach established in this paper has the advantages of convenient and fast Raman spectra acquisition, fast and accurate model identification.</description><identifier>ISSN: 1061-9348</identifier><identifier>EISSN: 1608-3199</identifier><identifier>DOI: 10.1134/S1061934822100173</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Analytical Chemistry ; Brand identification ; Chemistry ; Chemistry and Materials Science ; Decision analysis ; Decision trees ; Dried milk ; Identification and classification ; Methods ; Principal components analysis ; Raman spectra ; Raman spectroscopy ; Recognition ; Soya bean milk ; Soybeans ; Soymilk ; Spectrum analysis ; Wavelet analysis</subject><ispartof>Journal of analytical chemistry (New York, N.Y.), 2022-10, Vol.77 (10), p.1282-1286</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1061-9348, Journal of Analytical Chemistry, 2022, Vol. 77, No. 10, pp. 1282–1286. © Pleiades Publishing, Ltd., 2022.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-7482fb9e861917492861aaf57ba0de027692abf797cd7ad68d69be7cfbafd2273</citedby><cites>FETCH-LOGICAL-c455t-7482fb9e861917492861aaf57ba0de027692abf797cd7ad68d69be7cfbafd2273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1061934822100173$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1061934822100173$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Zheng-Yong</creatorcontrib><creatorcontrib>Shi, Xiao-Jing</creatorcontrib><creatorcontrib>Zhao, Ya-Ju</creatorcontrib><creatorcontrib>Zhang, Yin-Sheng</creatorcontrib><creatorcontrib>Wang, Hai-Yan</creatorcontrib><title>Brand Identification of Soybean Milk Powder based on Raman Spectroscopy Combined with Random Forest Algorithm</title><title>Journal of analytical chemistry (New York, N.Y.)</title><addtitle>J Anal Chem</addtitle><description>Raman spectroscopy can characterize the rich molecular vibration information of soybean milk powder samples, but difficulties arise in its direct use for sample classification and identification. Therefore, it is urgent to develop an intelligent identification technology based on Raman spectroscopy. For brand identification of soybean milk powder, this work investigates and discusses a variety of spectral processing technologies including wavelet denoising, normalization, principal component analysis, and the results show that appropriate spectral processing can improve the recognition accuracy of the random forest algorithm. Under the optimal conditions (db2 wavelet, normalization, principal component analysis, 30 decision trees), the best recognition effect of soybean milk brand identification can be achieved. The Raman spectral signal acquisition time of each sample is 40 s, and the spectra pretreatment and identification operation time only takes a few minutes. The analytical approach established in this paper has the advantages of convenient and fast Raman spectra acquisition, fast and accurate model identification.</description><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Brand identification</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Dried milk</subject><subject>Identification and classification</subject><subject>Methods</subject><subject>Principal components analysis</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Recognition</subject><subject>Soya bean milk</subject><subject>Soybeans</subject><subject>Soymilk</subject><subject>Spectrum analysis</subject><subject>Wavelet analysis</subject><issn>1061-9348</issn><issn>1608-3199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1ksFuEzEQhlcIJErhAbhZ4sRhi-3drNfHEFEaqQjUtGfLa48Xl1072I5K3r5TBamKCPLBo_m_f-wZTVW9Z_SCsab9tGG0Y7Jpe84ZpUw0L6oz1tG-bpiULzFGuX7SX1dvcr6nlMqedWfV_DnpYMnaQijeeaOLj4FERzZxP4AO5JuffpEf8cFCIoPOYAnqN3pGabMFU1LMJm73ZBXnwQeUH3z5iUCwcSaXMUEuZDmNMWF6flu9cnrK8O7vfV7dXX65XV3V19-_rlfL69q0i0WpBbbhBgk9tsREKzkGWruFGDS1QLnoJNeDE1IYK7TtetvJAYRxg3aWc9GcVx8Odbcp_t7hF9R93KWATyouEOCiFfSZGvUEygcXS9Jm9tmopeBs0fKGS6TqE9QIAZKeYgDnMX3EX5zg8ViYvTlp-HhkQKbAnzLqXc5qvbk5ZtmBNTj3nMCpbfKzTnvFqHpaBPXPIqCHHzwZ2TBCeh7G_02PaCWyLw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhang, Zheng-Yong</creator><creator>Shi, Xiao-Jing</creator><creator>Zhao, Ya-Ju</creator><creator>Zhang, Yin-Sheng</creator><creator>Wang, Hai-Yan</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20221001</creationdate><title>Brand Identification of Soybean Milk Powder based on Raman Spectroscopy Combined with Random Forest Algorithm</title><author>Zhang, Zheng-Yong ; Shi, Xiao-Jing ; Zhao, Ya-Ju ; Zhang, Yin-Sheng ; Wang, Hai-Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-7482fb9e861917492861aaf57ba0de027692abf797cd7ad68d69be7cfbafd2273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Brand identification</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Dried milk</topic><topic>Identification and classification</topic><topic>Methods</topic><topic>Principal components analysis</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Recognition</topic><topic>Soya bean milk</topic><topic>Soybeans</topic><topic>Soymilk</topic><topic>Spectrum analysis</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zheng-Yong</creatorcontrib><creatorcontrib>Shi, Xiao-Jing</creatorcontrib><creatorcontrib>Zhao, Ya-Ju</creatorcontrib><creatorcontrib>Zhang, Yin-Sheng</creatorcontrib><creatorcontrib>Wang, Hai-Yan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of analytical chemistry (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zheng-Yong</au><au>Shi, Xiao-Jing</au><au>Zhao, Ya-Ju</au><au>Zhang, Yin-Sheng</au><au>Wang, Hai-Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brand Identification of Soybean Milk Powder based on Raman Spectroscopy Combined with Random Forest Algorithm</atitle><jtitle>Journal of analytical chemistry (New York, N.Y.)</jtitle><stitle>J Anal Chem</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>77</volume><issue>10</issue><spage>1282</spage><epage>1286</epage><pages>1282-1286</pages><issn>1061-9348</issn><eissn>1608-3199</eissn><abstract>Raman spectroscopy can characterize the rich molecular vibration information of soybean milk powder samples, but difficulties arise in its direct use for sample classification and identification. Therefore, it is urgent to develop an intelligent identification technology based on Raman spectroscopy. For brand identification of soybean milk powder, this work investigates and discusses a variety of spectral processing technologies including wavelet denoising, normalization, principal component analysis, and the results show that appropriate spectral processing can improve the recognition accuracy of the random forest algorithm. Under the optimal conditions (db2 wavelet, normalization, principal component analysis, 30 decision trees), the best recognition effect of soybean milk brand identification can be achieved. The Raman spectral signal acquisition time of each sample is 40 s, and the spectra pretreatment and identification operation time only takes a few minutes. The analytical approach established in this paper has the advantages of convenient and fast Raman spectra acquisition, fast and accurate model identification.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061934822100173</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-9348
ispartof Journal of analytical chemistry (New York, N.Y.), 2022-10, Vol.77 (10), p.1282-1286
issn 1061-9348
1608-3199
language eng
recordid cdi_proquest_journals_2722727470
source Springer Nature - Complete Springer Journals
subjects Algorithms
Analytical Chemistry
Brand identification
Chemistry
Chemistry and Materials Science
Decision analysis
Decision trees
Dried milk
Identification and classification
Methods
Principal components analysis
Raman spectra
Raman spectroscopy
Recognition
Soya bean milk
Soybeans
Soymilk
Spectrum analysis
Wavelet analysis
title Brand Identification of Soybean Milk Powder based on Raman Spectroscopy Combined with Random Forest Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brand%20Identification%20of%20Soybean%20Milk%20Powder%20based%20on%20Raman%20Spectroscopy%20Combined%20with%20Random%20Forest%20Algorithm&rft.jtitle=Journal%20of%20analytical%20chemistry%20(New%20York,%20N.Y.)&rft.au=Zhang,%20Zheng-Yong&rft.date=2022-10-01&rft.volume=77&rft.issue=10&rft.spage=1282&rft.epage=1286&rft.pages=1282-1286&rft.issn=1061-9348&rft.eissn=1608-3199&rft_id=info:doi/10.1134/S1061934822100173&rft_dat=%3Cgale_proqu%3EA721542329%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722727470&rft_id=info:pmid/&rft_galeid=A721542329&rfr_iscdi=true